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Introduction

e The so-called Fibonacci zeta function and Lucas zeta function defined by

S\ it |
Cr(s)= ) —;and(r(s)= > ==

where the F;, and L,, denote the Fibonacci numbers and Lucas numbers.

e In 1980, Erdos proposed that if the following sums are irrational

which was proved by Andre-Jeannin and Badea.
And Is it true the following sum is irrational
T
k=1 Fo

forn1<n2---,with"fl—:120>1.




For the Fibonacci numbers { F},}, and |- | denotes the floor function.
e Theorem (Ohtsuka, Nakamura, 2009, The Fibonacci Quarterly)

(
F_s, if n1s even and n > 2;

F, o—1, ifnisoddand n > 1.
\

(
F, 1F,—1, ifnisevenand n > 2;

(£7) |-

k=n

oL, ifnisodd and n > 1.
\

e Theorem (Ohtsuka, 2011, The Fibonacci Quarterly)
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Problems
Let {u,} be the second-order linear recursive sequence, u, = au,_1 + bu, 2,
where a and b are arbitrary reals, for any positive integer s and c.

Infinite sums

1
— —
uS

k=n k

Finite sums

cn 1 Sl
N N
S
Uy,




e Theorem (Zhang Wenpeng, Wang Tingting, 2012, Applied Mathematics

and Computation)

For the Pell numbers { P, }

y

o 1 P, 14+ P, o, if n > 21s even;
>2) |-

\ P14+ P, o—1, if n > 11isodd,

>
2P, 1P,, ifn > 2is even,;

| 2P, 1P,, ifn > 11so0dd,




e Theorem (Xu Zhefeng, Wang Tingting, 2013, Advances in Difference

Equations)
Let
o0 1 =1
k=n =k
then
( 61 91 SN
Pan_l + 3PnP3_1 + __ﬁpn - @Pn_lJ , if niseven ;
P(3,n) =«

61 91
SRS P L (—P, + —Pn_lJ ., ifnisodd.
| | 82 82




e Theorem (Kilic, Arikan, 2013, Applied Mathematics and Computation)

For any positive integer p > ¢q and n > k,
Up = PUp—1 + qQUp—2 + Up—3 + * ** + Up—k,

there exists a positive integer n such that

-1

=\
Z_ = Up — Up-1, (nZnO)a
Uk,
k=n
where | - || denotes the nearest integer. (Clearly, ||z| = |z + 3].)

e Definition For any positive integer n > m , the mth-order linear recursive

sequences {u, } is defined as follows
Un = Q1Up—1 F Q2Un—2 + - - + U1 Up—mt1 + AnlUn—m, (D)

with 1nitial values u; € N for 0 < 7 < m and at least one of them is not zero.
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Theorem (Wu Zhengang, 2014, The Scientific World Journal)

Let {u,} be an mth-order sequence defined by (1) with the restriction
ay,as, -+ ,a, € Nand a; > ay > --- > a,, > 2. For any real number 5 > 2
and positive integer 1 < s < Uog%1 ad], where o, aq, . .., a,,_1 are the roots
of the characteristic equation of u,, and d~! = max{|a|, |as], -, |m_1|}, then

there exists a positive integer no such that

LBn] sk S S
a U u, _

g — = ) =0, (=)
us asn s -

o 1 1
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2 Periodic Fibonacci numbers

Introduction

Definition 1. For any positive integer a, b, the 2-periodic Fibonacci numbers Periodic Fibonacol...
Related problem

iS deﬁned as fOHOWS. Proof of the main theorem

e Edson introduced a new generalized Fibonacci sequence that depends on two

real parameters as follows:

4
aly,—1 + Up—o, 1fnis aneven and n > 2,

Home Page

Title Page

bu,_1+ up_o, if nisanoddandn > 1,
\

with initial values ug = 0 and u; = 1,

e Generalized Binet’s Formula The terms of the generalized Fibonacci se- Page 10 of 31
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Theorem (Zhang Han, Wu Zhengang, 2013, Advances in Difference Equa-
tions)

(I)Let {u,} be a second-order sequence defined by Definition 1. For any even
p > 2 and non-negative integer ¢ < p, there exists a positive integer n; such that

-1

o0
1
E = Upn+q — Upn—p+q

Uu
k=n B

for all n > ny.
(2) Let {u,} be a second-order sequence defined by Definition 1. For any integer
¢ > 0, there exists a positive integer no such that

-1

o0 k1.k+2c+1
Z aRbR <t N (unun+20+1 N un—lun+20> NG
= UR Uk 42041 anbn—l—?c—f—l an—lbn—i—?c

for all n > ns.
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e Definition 2. For any positive integer x1,xs, - , ¢, let qg = 0, ¢ = 1, if

n > 2, the sequence {q,} satisfies

2

X1Qn-1+ qn—2, 1f n=2 modt,
ToQn_1+ qn_o, 1f n=3 mod{,
dn = 9
Ti—1Qn-1 + Qn—o, if n =0 mod ¢,

TtQn-1+ qn—2, 1 n=1 modt.
\
We call {q,,} the t-periodic Fibonacci numbers.

e Generalized Binet’s Formula. The terms of the ¢-periodic Fibonacci num-

bers {g,} are given by

t t t—1 t—1
st+r — —]_ (t+1)8 ((a2 A\ 62) s+r (aQ 2 ) 7“) )
& =) 0 = (8 N vy — P S
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Theorem. Let {¢, } be the t-periodic Fibonacci numbers defined by Definition 2.

For any positive integer s and a with

1-2 2
<A+\/A2—4> ] 8 <A+\/A2—4)“

2 2

then there exists a positive integer no, for n > ns,

00 atks A N (sz?:l qm—i-i)s N (Hﬁ:l Qtnt—i—z')S) =0
(Z (IT >S> ( |

- i=1 Qtk+i




3 Related problem

3.1. The binomial transform sequence

Theorem (Wu Zhengang, 2013, Advances in Difference Equations)

Let { X, } be a third-order linear recurrence sequence X, 13 = a- X, 10+b- X, 11+

c - X,, with the initial values Xy = u, X7 = v and Xy = w for all n > 1, where

a,b and c are positive integers. For any positive integer d > 2, The binomial

transform sequence 7, is defined by { X 4,11} as

& n
Tt =9 ( k) + X1,

k=0

Then we have the recurrence formula

9193 — 9196 + g7 9394 — 9296 — 9197

9395 — 9297

Tn+1 = Tn 5 $ Tn—l N8

g3 — ge g3 — ge g3 — ge

TN
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where

g=h+fatc - Aifs, g2= 34001 — fifo+c- Aafe,
gs=c- A%y —c-Aafotc-Aafe, ga= [3Aar1 — fifo+c- Aa(fs + fo),
g5 =c-Aafs, 96 =c- (Aay1 — Aafo+ Aafs — Ag), g7 =c- Adfs,

and

Ji=b - Agt+c-Ag1+1, fo=14+Agqp0, fs=0-Ag1+c: Ay,

C'A2 Ad

e Ay — T A

Ja S [ i
A2 L. A, A+ A
e, Adil & W

the sequence {A,} is defined by A,,,.3 = a- A0+ b A1 + ¢+ A, with the

initial values A; = 0, Ay = 1 and A3 = q, forall n > 1.




Conjecture. For any positive integer n > m , the mth-order linear recursive

sequences { X, } is defined as follows
Xn = Xp 1+ aXp o+ +an1Xn mi1 + @mXpn_m, (2)

with 1nitial values u; € N for 0 < ¢ < m and at least one of them is not zero. The

binomial transform sequence 7;, of { X, } is defined by

& n
G ( k) + Xagy1-

k=0
For positive integer a; > as > --- > a,, > 1, there exists a positive integer n

such that

Ny
—
(E . ) = Tontg — Tpnp+q (0 2 10)
i pbrTq

=N




3.2. Other identities

Theorem (Zhang Wenpeng, 1996, The Fibonacci Quarterly)
Let {u,} be the second-order linear recursive sequence, u,, = au,_1 + bu, o,

where a and b are arbitrary reals

Ui
Z Ua1Ua2 A\ Uak N <b2 i 4a)"“_1(/~c N 1)' [gk—l(n)Un—kH—l"’hk—l(n)Un—kz]7

a1+---+ag=n

where gi._1(z) and hy_1 () are two effectively computable polynomials of degree
k — 1, their coefficients depending only on a, b, and k.

Corollary Let F;, be the Fibonacci sequence. Then we have

1
(1) ) F.F= =l(n=1)F +20F ] n > 1;
a+b=n

1
(2) Y FE.FRF [(6n® — 91 — 2)F,_1 + (5n% — 3n — 2)F,_3],n > 2;
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Theorem (Ohtsuka, 2012, The Fibonacci Quarterly )

(1) (1 —§(1 \ F%))l ~

o|(-1-) |-

S F.F, 1 —1, foranyevenn > 3;
\

3
F.F, 4 for any odd n > 3;

Theorem (Kuhapatanakul, 2013, Journal of Integer Sequences)

For Fibonacci numbers { F} },

. (Z = F) N

k=n
4
. 1 [N ifm > 3, n > 218 even;
|
o %) -
S Boo— 1 ifn > 3isodd,
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4 Proof of the main theorem

Theorem (Wu Zhengang, Zhang Jin)
For any positive integer n > m , the mth-order linear recursive sequences {u,, }

1s defined as follows
Up = A1Up—1 + GUp—2 + - - - + Ap—1Un—m+1 + AnUn—m,

with ay,a9,--- ,a,, € Nand a; > ay > --- > a,, > 2, and initial values u; € N
for 0 < 7 < m and at least one of them is not zero. For any real number g > 2
and positive integer 1 < s < Uoga&1 ad], where o, aq, . .., a,,_1 are the roots
of the characteristic equation of u,, and d~! = max{|a|, |as], - ,|m_1|}, then

there exists a positive integer no such that

|6n]

k s S
aj U U
1 n n—1
2 : S ( sn sn—s) Ov (n > nQ)'
’U,k CLl CLl

k=n
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4.1. Several Lemmas

e Lemmal. Leta;,a0,--- ,a,, € Nwitha; >ay > --->a,, > landm € N

with m > 2. Then for the polynomial

Jil) — =™ — ™ — aox™ T2 — g

we have
(I). Polynomial f(z) has exactly one positive real zero a with a; < a <
ai + 1.

(IT). Other m — 1 zeros of f(z) lie within the unit circle in the complex plane.




Proof of (I).

e For any positive integer a; > as > - -+ > a,, > 1 and m > 2,

flay) = —azaT_z — e Q1G] — Ay, < 0,

BRI )™ — a1((ay + 1)™ + (a; + 1) 52 SR ]

e Thus there exits a positive real zero v of f(z) with a; < o < a3 + 1. Accord-
ing to Descarte’s rule of signs, f(x) = 0 has at most one positive real root.

So f(x) has exactly one positive real zero a with a; < a < a; + 1.




Proof of (IT).

e Observe from (I) in Lemma 1, we have

if x € R such that x > a, then f(x) > 0, 3)

if x € Rsuchthat 0 < x < a, then f(x) < 0. 4)

o [et

BRI — " — (a1 + 1)2™ + (01 — ap)2™ T (02105
BEERE (@1 — 0 )T + Q-

Since f(x) has exactly one positive real zero «, g(z) has two positive real

zeros o and 1.




Observe that

if x € R such that x > a, then g(x) > 0, (5)

if v € Rsuchthat 1 < x < a, then g(x) < 0. (6)

To complete the proof of (II) in Lemma 1, it is sufficient to show that there is no

zero on and outside of the unit circle.

e Claim 1: f(x) has no complex zero z; with |21| > .

e Claim 2: f(x) has no complex zero z» with 1 < |23| < av.

e Claim 3: On the circle |z3] = a and |z3| = 1, f(z) has the unique zero «.




e Lemma 2. Let m > 2 and let {u, },>0 be an integer sequence satisfying the

recurrence formula (1). Then the closed formula of u,, is given by

up =ca” + O0(d™") (n — 00).
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e Proof Let o, a,...,a; be the distinct roots of f(z) = 0, where f(z) = 0
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e Remark For example, for positive integers 1 < wu,v,w < t, if o, is the
simple root of f(x), then P,(n) = gi, where g; € R, and degP,(n) = 0; if
«, is the double root of f(x), then P,(n) = gon + g3, where go, g3 € R, and R

degP,(n) = 1;if ay, is the multiple root of f(x) with the multiplicity r,, then e

Related problem

Proof of the main theorem

Pw(n) = bmrw_l T bgnrw_Q N R brw_ln S brw, where b1, bQ, R brw € R,
and degP,(n) = r, — 1.

Home Page
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with d > 1 for n > ng such that

t

> B(n)af

1=1
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e Lemma 3. Let m > 2 and let {u, },>¢ be an integer sequence satisfying the

recurrence formula (1). Then for any positive integer s, we have
uy =’ 4+ O™ ""d™) (n — 00),

where ¢ > 0,d > 1, and a1 < a < a; + 1 is the positive real zero of f(x).




Proof of the Theorem

e From the geometric series as ¢ — 0, we have

1 2
T 1F g+ O(q) + O(q)

aik ai’k a.ik

us T oo O(ak—kd—F) :Csask(l + O(akdH))
sk




|8 a5k 1 | Bn ] N ok | Bn] ask
QRN N~ (@ —
; . ; (a SO ; PV

s sn 1 s n] i
. (@ ) \ : (ﬂ) +Oo .
o — (i ANe a®—aj \«o N
N s|pn|—sn sn
a1>3” a4 oL .
e ot N O (L8
(O,/ Sh (asn as[ﬂn]sﬂ) & <a5n andn)
s sn St
o (5 ).
@ —a 5 "

asLﬁnJ —sn 1
where h = maX{aiLﬁnJ—sn’ a”d”}'




e Taking reciprocal, we get

|6n] NN

sk s sn
YA | =
us N asn a’" s as" i
b\ 1 1 1

s|Bn]—sn
e Case 1. If h = S, for any real 3 > 2 and positive integer s,

as" \ oS aiL/B"J—S” \ (al)sLBnJ—%n

a T ag ol N

«

Case 2. If h = ﬁ, for any positive a; > 2,1 < c% < «ad holds, then for

any positive integer s with
1 <s<|loge ad],
a

we have
Sn Q

sn—n as—l n
-h = = < 1.
a3" ai e ajd




Related results

Theorem 2. Let {u,} be an mth-order sequence defined by (1) with the restric-

tion aj, a9, -+ ,a, € Nanda; > as > -+ > a,, > 2. Let p and ¢ be positive

integers with 0 < ¢ < p. For any real number § > 2 and positive integer

Introduction

1 < s < |loga aPdP], where a, vy, . . ., vy, 1 are the roots of the characteristic e
al Periodic Fibonacci. . .
equation of u,, and d~! = max{|a1|, |as|, -, |am_1|}, then there exist positive Related probiem
Proof of the main theorem
integers n7, ng and ng depending on ay, as, - - -, and a,, such that
6] N
(_al)s sn [ Un Up 1
D I G B = R = )
b k 1 1
BN\
Spk+sq S S
(b) al N upn+q N upn—p+q N O ( > ) \II\ZI
I, pk-+q 1 1
\
|Bn] k s S
( ) (—al)SP N ~ (_1)spn—i—sq upn+q S upn—]H-Q =0 ( > )
C). us spn+sq spn—+sq—sp = Uy (IbS=Rilops



Thank you!
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