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1 Introduction

• The so-called Fibonacci zeta function and Lucas zeta function defined by

ζF (s) =
∞∑
n=1

1

F s
n

and ζL(s) =
∞∑
n=1

1

Lsn
,

where the Fn and Ln denote the Fibonacci numbers and Lucas numbers.

• In 1980, Erdös proposed that if the following sums are irrational

∞∑
n=1

1

F2n+1
and

∞∑
n=0

1

L2n
,

which was proved by Andre-Jeannin and Badea.

And Is it true the following sum is irrational

∞∑
k=1

1

Fnk
,

for n1 < n2 · · · , with nk+1

nk
≥ c > 1.
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For the Fibonacci numbers {Fn}, and b·c denotes the floor function.

• Theorem (Ohtsuka, Nakamura, 2009, The Fibonacci Quarterly)

( ∞∑
k=n

1

Fk

)−1 =


Fn−2, if n is even and n ≥ 2;

Fn−2 − 1, if n is odd and n ≥ 1.

( ∞∑
k=n

1

F 2
k

)−1 =


Fn−1Fn − 1, if n is even and n ≥ 2;

Fn−1Fn, if n is odd and n ≥ 1.

• Theorem (Ohtsuka, 2011, The Fibonacci Quarterly)( ∞∑
k=n

1

F 2
k

)−1
= Fn−1Fn −

(−1)n

3
+O

(
1

F 2
n

)
.

( ∞∑
k=n

1

FkFk+m

)−1
=

n−1∑
k=1

1

FkFk+m
+

1

3
Fm−2(−1)n +O

(
1

F 2
n

)
.
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Problems

Let {un} be the second-order linear recursive sequence, un = aun−1 + bun−2,

where a and b are arbitrary reals, for any positive integer s and c.

Infinite sums ( ∞∑
k=n

1

usk

)−1
=?

Finite sums (
cn∑
k=n

1

usk

)−1
=?
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• Theorem (Zhang Wenpeng, Wang Tingting, 2012, Applied Mathematics

and Computation)

For the Pell numbers {Pn}

( ∞∑
k=n

1

Pk

)−1 =


Pn−1 + Pn−2, if n ≥ 2 is even;

Pn−1 + Pn−2 − 1, if n ≥ 1 is odd,

( ∞∑
k=n

1

P 2
k

)−1 =


2Pn−1Pn, if n ≥ 2 is even;

2Pn−1Pn, if n ≥ 1 is odd,
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• Theorem (Xu Zhefeng, Wang Tingting, 2013, Advances in Difference

Equations)

Let

P (3, n) =

( ∞∑
k=n

1

P 3
k

)−1 ,
then

P (3, n) =


P 2
nPn−1 + 3PnP

2
n−1 +

⌊
−61
82
Pn −

91

82
Pn−1

⌋
, if n is even ;

P 2
nPn−1 + 3PnP

2
n−1 +

⌊
61

82
Pn +

91

82
Pn−1

⌋
, if n is odd .
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• Theorem (Kilic, Arikan, 2013, Applied Mathematics and Computation)

For any positive integer p ≥ q and n > k,

un = pun−1 + qun−2 + un−3 + · · ·+ un−k,

there exists a positive integer n0 such that∥∥∥∥∥∥
( ∞∑
k=n

1

uk

)−1∥∥∥∥∥∥ = un − un−1, (n ≥ n0),

where ‖ · ‖ denotes the nearest integer. (Clearly, ‖x‖ = bx+ 1
2c.)

• Definition For any positive integer n > m , the mth-order linear recursive

sequences {un} is defined as follows

un = a1un−1 + a2un−2 + · · ·+ am−1un−m+1 + amun−m, (1)

with initial values ui ∈ N for 0 ≤ i < m and at least one of them is not zero.
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Theorem (Wu Zhengang, 2014, The Scientific World Journal)

Let {un} be an mth-order sequence defined by (1) with the restriction

a1, a2, · · · , am ∈ N and a1 ≥ a2 ≥ · · · ≥ am ≥ 2. For any real number β > 2

and positive integer 1 ≤ s < blog α
a1
αdc, where α, α1, . . . , αm−1 are the roots

of the characteristic equation of un and d−1 = max{|α1|, |α2|, · · · , |αm−1|}, then

there exists a positive integer n2 such that∥∥∥∥∥∥∥
bβnc∑

k=n

ask1
usk

−1 − ( usn
asn1
−
usn−1
asn−s1

)∥∥∥∥∥∥∥ = 0, (n ≥ n2).



Introduction

Periodic Fibonacci . . .

Related problem

Proof of the main theorem

Home Page

Title Page

JJ II

J I

Page 10 of 31

Go Back

Full Screen

Close

Quit

2 Periodic Fibonacci numbers

• Edson introduced a new generalized Fibonacci sequence that depends on two

real parameters as follows:

Definition 1. For any positive integer a, b, the 2-periodic Fibonacci numbers

is defined as follows.

un =


aun−1 + un−2, if n is an even and n ≥ 2,

bun−1 + un−2, if n is an odd and n ≥ 1,

with initial values u0 = 0 and u1 = 1,

• Generalized Binet’s Formula The terms of the generalized Fibonacci se-

quence {un} are given by

un =
a2b

n
2 c−n+1

(ab)b
n
2 c
· α

n − βn

α− β
,

where α = ab+
√
a2b2+4ab
2 , β = ab−

√
a2b2+4ab
2 .
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Theorem (Zhang Han, Wu Zhengang, 2013, Advances in Difference Equa-

tions)

(1)Let {un} be a second-order sequence defined by Definition 1. For any even

p ≥ 2 and non-negative integer q < p, there exists a positive integer n1 such that∥∥∥∥∥∥
( ∞∑
k=n

1

upk+q

)−1∥∥∥∥∥∥ = upn+q − upn−p+q

for all n ≥ n1.

(2) Let {un} be a second-order sequence defined by Definition 1. For any integer

c ≥ 0, there exists a positive integer n2 such that∥∥∥∥∥∥
( ∞∑
k=n

akbk+2c+1

ukuk+2c+1

)−1
−
(unun+2c+1

anbn+2c+1
− un−1un+2c

an−1bn+2c

)∥∥∥∥∥∥ = 0

for all n ≥ n2.
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• Definition 2. For any positive integer x1, x2, · · · , xt, let q0 = 0, q1 = 1, if

n ≥ 2, the sequence {qn} satisfies

qn =



x1qn−1 + qn−2, if n ≡ 2 mod t,

x2qn−1 + qn−2, if n ≡ 3 mod t,
...

xt−1qn−1 + qn−2, if n ≡ 0 mod t,

xtqn−1 + qn−2, if n ≡ 1 mod t.

We call {qn} the t-periodic Fibonacci numbers.

• Generalized Binet’s Formula. The terms of the t-periodic Fibonacci num-

bers {qn} are given by

qst+r = (−1)(t+1)s

((
αt2 − βt2
α2 − β2

)
qs+r −

(
αt−12 − βt−12

α2 − β2

)
qr

)
,

where

α2 =
(−1)tA+

√
A2 − (−1)t4
2

, β2 =
(−1)tA−

√
A2 − (−1)t4
2

.
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Theorem. Let {qn} be the t-periodic Fibonacci numbers defined by Definition 2.

For any positive integer s and a with(
A+
√
A2 − 4

2

)1− 2
ts

< a <

(
A+
√
A2 − 4

2

) 2
ts−1

,

then there exists a positive integer n2, for n ≥ n2,∥∥∥∥∥∥
( ∞∑
k=n

atks(∏t
i=1 qtk+i

)s
)−1
−

((∏t
i=1 qtn+i

)s
atns

−
(∏t

i=1 qtn−t+i
)s

atns−ts

)∥∥∥∥∥∥ = 0.
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3 Related problem

3.1. The binomial transform sequence

Theorem (Wu Zhengang, 2013, Advances in Difference Equations)

Let {Xn} be a third-order linear recurrence sequenceXn+3 = a·Xn+2+b·Xn+1+

c ·Xn with the initial values X0 = u, X1 = v and X2 = w for all n ≥ 1, where

a, b and c are positive integers. For any positive integer d ≥ 2, The binomial

transform sequence Tn is defined by {Xdn+1} as

Tn+1 =
n∑
k=0

(
n

k

)
·Xdk+1.

Then we have the recurrence formula

Tn+1 =
g1g3 − g1g6 + g7

g3 − g6
· Tn +

g3g4 − g2g6 − g1g7
g3 − g6

· Tn−1 +
g3g5 − g2g7
g3 − g6

· Tn−2.
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where

g1 = f1 + f2 + c · Adf5, g2 = f3Ad+1 − f1f2 + c · Adf6,

g3 = c · A2
d+1 − c · Adf2 + c · Adf4, g4 = f3Ad+1 − f1f2 + c · Ad(f5 + f6),

g5 = c · Adf6, g6 = c · (Ad+1 − Adf2 + Adf4 − Ad), g7 = c · Adf4,

and

f1 = b · Ad + c · Ad−1 + 1, f2 = 1 + Ad+2, f3 = b · Ad−1 + c · Ad,

f4 = 1 + c · Ad−1 −
c · A2

d

Ad+1
, f5 =

Ad

Ad+1
,

f6 = b · Ad−1 + c · Ad−2 −
b · A2

d + c · Ad−1Ad + Ad

Ad+1
,

the sequence {An} is defined by An+3 = a · An+2 + b · An+1 + c · An with the

initial values A1 = 0, A2 = 1 and A3 = a, for all n ≥ 1.
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Conjecture. For any positive integer n > m , the mth-order linear recursive

sequences {Xn} is defined as follows

Xn = a1Xn−1 + a2Xn−2 + · · ·+ am−1Xn−m+1 + amXn−m, (2)

with initial values ui ∈ N for 0 ≤ i < m and at least one of them is not zero. The

binomial transform sequence Tn of {Xn} is defined by

Tn+1 =
n∑
k=0

(
n

k

)
·Xdk+1.

For positive integer a1 ≥ a2 ≥ · · · ≥ am ≥ 1, there exists a positive integer n0

such that

∥∥∥∥∥∥
( ∞∑
k=n

1

Tpk+q

)−1∥∥∥∥∥∥ = Tpn+q − Tpn−p+q (n ≥ n0)
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3.2. Other identities

Theorem (Zhang Wenpeng, 1996, The Fibonacci Quarterly)

Let {un} be the second-order linear recursive sequence, un = aun−1 + bun−2,

where a and b are arbitrary reals∑
a1+···+ak=n

Ua1Ua2 · · ·Uak =
Uk−1
1

(b2 + 4a)k−1(k − 1)!
[gk−1(n)Un−k+1+hk−1(n)Un−k],

where gk−1(x) and hk−1(x) are two effectively computable polynomials of degree

k − 1, their coefficients depending only on a, b, and k.

Corollary Let Fn be the Fibonacci sequence. Then we have

(1)
∑
a+b=n

FaFb =
1

5
[(n− 1)Fn + 2nFn−1], n ≥ 1;

(2)
∑

a+b+c=n

FaFbFc =
1

50
[(5n2 − 9n− 2)Fn−1 + (5n2 − 3n− 2)Fn−2], n ≥ 2;
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Theorem (Ohtsuka, 2012, The Fibonacci Quarterly )

(1)

(1− ∞∏
k=n

(
1− 1

Fk

))−1 = Fn−2

(2)

(1− ∞∏
k=n

(
1− 1

F 2
k

))−1 =


FnFn−1 for any odd n ≥ 3;

FnFn−1 − 1, for any even n ≥ 3;

Theorem (Kuhapatanakul, 2013, Journal of Integer Sequences)

For Fibonacci numbers {Fk},

(1)

( ∞∑
k=n

1∑k
i=0 Fi

)−1
= Fn − 1

(2)

(
mn∑
k=n

1

Fk

)−1
=


Fn−2, if m ≥ 3, n ≥ 2 is even;

Fn−2 − 1, if n ≥ 3 is odd,
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4 Proof of the main theorem

Theorem (Wu Zhengang, Zhang Jin)

For any positive integer n > m , the mth-order linear recursive sequences {un}

is defined as follows

un = a1un−1 + a2un−2 + · · ·+ am−1un−m+1 + amun−m,

with a1, a2, · · · , am ∈ N and a1 ≥ a2 ≥ · · · ≥ am ≥ 2, and initial values ui ∈ N

for 0 ≤ i < m and at least one of them is not zero. For any real number β > 2

and positive integer 1 ≤ s < blog α
a1
αdc, where α, α1, . . . , αm−1 are the roots

of the characteristic equation of un and d−1 = max{|α1|, |α2|, · · · , |αm−1|}, then

there exists a positive integer n2 such that∥∥∥∥∥∥∥
bβnc∑

k=n

ask1
usk

−1 − ( usn
asn1
−
usn−1
asn−s1

)∥∥∥∥∥∥∥ = 0, (n ≥ n2).
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4.1. Several Lemmas

• Lemma 1. Let a1, a2, · · · , am ∈ N with a1 ≥ a2 ≥ · · · ≥ am ≥ 1 andm ∈ N

with m ≥ 2. Then for the polynomial

f(x) = xm − a1xm−1 − a2xm−2 − · · · − am−1x− am,

we have

(I). Polynomial f(x) has exactly one positive real zero α with a1 < α <

a1 + 1.

(II). Other m−1 zeros of f(x) lie within the unit circle in the complex plane.
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Proof of (I).

• For any positive integer a1 ≥ a2 ≥ · · · ≥ am ≥ 1 and m ≥ 2,

f(a1) = −a2am−21 − · · · am−1a1 − am < 0,

f(a1 + 1) > (a1 + 1)m − a1((a1 + 1)m−1 + (a1 + 1)m−2 + · · ·+ 1) > 0.

• Thus there exits a positive real zero α of f(x) with a1 < α < a1+1. Accord-

ing to Descarte’s rule of signs, f(x) = 0 has at most one positive real root.

So f(x) has exactly one positive real zero α with a1 < α < a1 + 1.
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Proof of (II).

• Observe from (I) in Lemma 1, we have

if x ∈ R such that x > α, then f(x) > 0, (3)

if x ∈ R such that 0 < x < α, then f(x) < 0. (4)

• Let

g(x) = (x− 1)f(x) =xm+1 − (a1 + 1)xm + (a1 − a2)xm−1 + (a2 − a3)xm−2

+ · · ·+ (am−1 − am)x+ am.

Since f(x) has exactly one positive real zero α, g(x) has two positive real

zeros α and 1.
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Observe that

if x ∈ R such that x > α, then g(x) > 0, (5)

if x ∈ R such that 1 < x < α, then g(x) < 0. (6)

To complete the proof of (II) in Lemma 1, it is sufficient to show that there is no

zero on and outside of the unit circle.

• Claim 1: f(x) has no complex zero z1 with |z1| > α.

• Claim 2: f(x) has no complex zero z2 with 1 < |z2| < α.

• Claim 3: On the circle |z3| = α and |z3| = 1, f(x) has the unique zero α.
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• Lemma 2. Let m ≥ 2 and let {un}n≥0 be an integer sequence satisfying the

recurrence formula (1). Then the closed formula of un is given by

un = cαn +O(d−n) (n→∞) .

where c > 0, d > 1, and a1 < α < a1 + 1 is the positive real zero of f(x).

• Proof Let α, α1, . . . , αt be the distinct roots of f(x) = 0, where f(x) = 0

is the characteristic equation of the recurrence formula. From Lemma 1 we

know that α is the simple root of f(x) = 0 , then let rj for j = 1, 2, . . . , t

denote the multiplicity of the root αj. From the properties ofmth-order linear

recursive sequences,

un = cαn +
t∑
i=1

Pi(n)α
n
i ,

where

Pi(n) ∈ R[n], degPi(n) = ri − 1, r1 + r2 + · · ·+ rt = m− 1, c ∈ R.



Introduction

Periodic Fibonacci . . .

Related problem

Proof of the main theorem

Home Page

Title Page

JJ II

J I

Page 25 of 31

Go Back

Full Screen

Close

Quit

• Remark For example, for positive integers 1 ≤ u, v, w ≤ t, if αu is the

simple root of f(x), then Pu(n) = g1, where g1 ∈ R, and degPu(n) = 0; if

αv is the double root of f(x), then Pv(n) = g2n + g3, where g2, g3 ∈ R, and

degPv(n) = 1; if αw is the multiple root of f(x) with the multiplicity rw, then

Pw(n) = b1n
rw−1 + b2n

rw−2 + · · ·+ brw−1n+ brw , where b1, b2, · · · , brw ∈ R,

and degPw(n) = rw − 1.

From Lemma 1 we have |αi| < 1 for 1 ≤ i ≤ t. Since each term of tail of

above identity goes to 0 as n → ∞, we can find constant M ∈ R and d ∈ R

with d > 1 for n > n0 such that∣∣∣∣∣
t∑
i=1

Pi(n)α
n
i

∣∣∣∣∣ ≤
t∑
i=1

|Pi(n)αni | ≤Md−n,

which completes the proof (note that if all roots of f(x) are distinct we can

choose d−1 = max{|α1|, |α2|, · · · , |αm−1|} and M = m− 1).
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• Lemma 3. Let m ≥ 2 and let {un}n≥0 be an integer sequence satisfying the

recurrence formula (1). Then for any positive integer s, we have

usn = csαsn +O(αsn−nd−n) (n→∞),

where c > 0, d > 1, and a1 < α < a1 + 1 is the positive real zero of f(x).
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Proof of the Theorem

• From the geometric series as q → 0, we have

1

1± q
= 1∓ q +O(q2) = 1 +O(q).

•

ask1
usk

=
ask1

csαsk +O(αsk−kd−k)
=

ask1
csαsk(1 +O(α−kd−k))

=
ask1
csαsk

(
1 +O(α−kd−k)

)
=

ask1
csαsk

+O

(
ask1

αsk+kdk

)
.
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• Thus

bβnc∑
k=n

ask1
usk

=
1

cs

bβnc∑
k=n

(a1
α

)sk
+O

bβnc∑
k=n

ask1
αsk+kdk


=

αs

αs − as1
·
(a1
α

)sn
− 1

αs − as1
·
(a1
α

)sbβnc
+O

(
asn1

αsn+ndn

)
=

αs

αs − as1
·
(a1
α

)sn
+O

(
asn1
αsn
· a

sbβnc−sn
1

αsbβnc−sn

)
+O

(
asn1
αsn
· 1

αndn

)
=

αs

αs − as1
·
(a1
α

)sn
+O

(
asn1
αsn
· h
)
,

where h = max{ a
sbβnc−sn
1

αsbβnc−sn
, 1
αndn}.
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• Taking reciprocal, we getbβnc∑
k=n

ask1
usk

−1 = usn
asn1
−
usn−1
asn−s1

+O

(
αsn

asn1
· h
)
.

• Case 1. If h =
a
sbβnc−sn
1

αsbβnc−sn
, for any real β > 2 and positive integer s,

αsn

asn1
· h =

αsn

asn1
· a

sbβnc−sn
1

αsbβnc−sn
=
(a1
α

)sbβnc−2sn
< 1.

Case 2. If h = 1
αndn , for any positive a1 ≥ 2, 1 < α

a1
< αd holds, then for

any positive integer s with

1 ≤ s < blog α
a1
αdc,

we have
αsn

asn1
· h =

αsn−n

asn1 d
n
=

(
αs−1

as1d

)n
< 1.
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Related results

Theorem 2. Let {un} be an mth-order sequence defined by (1) with the restric-

tion a1, a2, · · · , am ∈ N and a1 ≥ a2 ≥ · · · ≥ am ≥ 2. Let p and q be positive

integers with 0 ≤ q < p. For any real number β > 2 and positive integer

1 ≤ s < blog α
a1
αpdpc, where α, α1, . . . , αm−1 are the roots of the characteristic

equation of un and d−1 = max{|α1|, |α2|, · · · , |αm−1|}, then there exist positive

integers n7, n8 and n9 depending on a1, a2, · · · , and am such that

(a).

∥∥∥∥∥∥∥
bβnc∑

k=n

(−a1)sk

usk

−1 − (−1)sn
(
usn
asn1

+
usn−1
asn−s1

)∥∥∥∥∥∥∥ = 0, (n ≥ n7).

(b).

∥∥∥∥∥∥∥
bβnc∑

k=n

aspk+sq1

uspk+q

−1 − ( uspn+q

aspn+sq1

−
uspn−p+q

aspn+sq−sp1

)∥∥∥∥∥∥∥ = 0, (n ≥ n8).

(c).

∥∥∥∥∥∥∥
bβnc∑

k=n

(−a1)spk+sq

uspk+q

−1 − (−1)spn+sq
(
uspn+q

aspn+sq1

+
uspn−p+q

aspn+sq−sp1

)∥∥∥∥∥∥∥ = 0, (n ≥ n9).
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Thank you!
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