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Two lectures delivered at the 2024 TIMS Summer Program in
Geometry, on July 15 and 16, at National Taiwan University. An
introduction to generalized Kähler geometry, covering both the bi-
Hermitian and generalized geometry approaches.

1 Introduction

Generalized Kähler geometry was discovered by physicists Gates, Hull,
and Roček in 1984 [15], when they sought to generalize the earlier work
of Zumino, who showed that a Kähler structure on the target of the
2-dimensional sigma model endows the model with an action by the
N = (2, 2) supersymmetry algebra. They observed that the same
occurs if the target is endowed with a generalized Kähler structure.

The literature on generalized Kähler geometry may be very roughly
summarized as follows:

1. The (very large) physics literature, of which some key examples
are [15, 30, 28], and most recently [27].

2. Relevant literature from complex geometry, especially [2].

3. The link to Hitchin’s generalized geometry [25, 19, 22, 23]

4. The construction of many examples [26, 21], for example by gen-
eralized Kähler reduction [7, 8].

5. Hodge theory for generalized Kähler structures [20, 9, 3]

6. T-duality and generalized geometry [1]

7. Deformation theory of Generalized Kähler metrics [16, 24],

8. Curvature of generalized Kähler manifolds, and Kobayashi-Hitchin
correspondence for vector bundles over generalized Kähler man-
ifolds [18, 17]

9. Generalized Ricci Flow [14], which includes generalized Kähler–
Ricci flow, a variant of pluriclosed flow.

10. Generalized Kähler geometry and symplectic groupoids, the gen-
eralized Kähler potential [5, 38]
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2 Generalized geometry

In generalized geometry, instead of using the tangent bundle TM of
the manifold M to model geometric structures, we use an extension of
this bundle. The only example we shall study in this course is

TM = TM ⊕ T ∗M,

which is useful for understanding T -duality, Mirror symmetry, and
Type I and II string theories. There is also

TM ⊕ gM ⊕ T ∗M,

where gM is the adjoint bundle of a principal G-bundle, which is use-
ful for understanding the Hull–Strominger system and Heterotic string
theory. See these references: [4, 13, 33]. There are even more compli-
cated examples, useful for capturing other supergravity theories, see
for example [6] and its references. All of the above are examples of
Courant algebroids, introduced in [29]. Very generally, the Courant
algebroid is supposed to be part of the background or substrate, on
top of which the geometry is defined. Once we have introduced the
simplest kind of Courant algebroid, we will explore the concept of a
generalized Riemannian metric on it, touching on its associated Hodge
decomposition.

2.1 The Courant algebroid TM
Split signature metric and spinors

A section X + ξ ∈ C∞(TM) acts on a differential form ρ ∈ Ω(M) via
interior and exterior product:

(X + ξ) · ρ = iXρ+ ξ ∧ ρ.

If we square this action, we obtain

(X + ξ) · ((X + ξ) · ρ) = iX(ξ ∧ ρ) + ξ ∧ iXρ = (iX(ξ))ρ,

so that if we define a symmetric bilinear form on the bundle TM as
follows:

⟨X + ξ, Y + η⟩ = 1
2 (iXη + iY ξ),

we obtain a metric of signature (n, n) for n = dimM on TM such that
the squared action satisfies

(X + ξ) · ((X + ξ) · ρ) = ⟨X + ξ,X + ξ⟩ρ.

This implies that the Clifford algebra bundle Cl(TM, ⟨·, ·⟩) acts on the
bundle ∧•T ∗M of differential forms. This representation is actually
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the spin representation of the real Clifford algebra of signature (n, n).
This representation is irreducible for the action of the Clifford algebra,
but if we consider the Spin subgroup Spin(n, n), then this decomposes
into a sum of irreducibles: the even and odd spinors, corresponding to
differential forms of even and odd degree, respectively:

S = ∧•T ∗M = ∧evT ∗ ⊕ ∧odT ∗ = S+ ⊕ S−.

In conclusion, on any manifold M , the natural bundle TM is en-
dowed with a metric of split signature, and we may view the differential
forms of M as its spinors.

Exercise 2.1. Prove that the bundle of Lie algebras so(TM, ⟨·, ·⟩) is
naturally isomorphic to

∧2TM ⊕ End(TM)⊕ ∧2T ∗M.

Show that any section β + A + B of the above defines the following
block endomorphism of TM :(

A β
B −A∗

)
,

where B ∈ ∧2T ∗, for example, determines the transformation B :
X + ξ 7→ iXB. Use this to compute the Lie bracket.

Exercise 2.2. The Lie algebra so(TM, ⟨·, ·⟩) acts on spinors, and in
particular, B ∈ Ω2(M) acts on ρ ∈ Ω•(M) via ρ 7→ −B ∧ ρ. This
action of Ω2(M) is called a B-field transformation in physics. Prove
that the actions intertwine, i.e. show that

−B ∧ ((X + ξ) · ρ) = (B(X + ξ)) · ρ+ (X + ξ) · (−B ∧ ρ).

By exponentiating this action, show that

e−B((X + ξ) · α) = (eB(X + ξ)) · e−Bα.

In other words, if c(X+ ξ) = (X+ ξ)· is the operator of Clifford action
by X + ξ, then the above equation may be interpreted as follows:

c(eB(X + ξ)) = e−B ◦ c(X + ξ) ◦ eB . (1)

The spin representation has a natural bilinear form called the Cheval-
ley pairing: for α, β ∈ Ω•(M), their pairing is the top degree form

⟨α, β⟩S = (α ∧ β⊤)top,

where (ρ)top denotes the component of degree dimM of ρ, and β 7→ β⊤

is the reversal anti-automorphism of the differential forms, i.e.

(dxi1 ∧ · · · ∧ dxik)⊤ = dxik ∧ · · · ∧ dxi1 .

In other words, β⊤ = (−1)k(k−1)/2β for β of degree k.
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Exercise 2.3. Show the identity, for all α, β ∈ Ω•(M) and X + ξ ∈
TM ,

⟨(X + ξ) · α, (X + ξ) · β⟩S = ⟨X + ξ,X + ξ⟩⟨α, β⟩S ,
and conclude that the Chevalley pairing is invariant under the action
of the identity component of Spin(TM, ⟨·, ·⟩). In particular, check
explicitly that for B ∈ C∞(∧2T ∗M),

⟨eBα, eBβ⟩S = ⟨α, β⟩S .

Exercise 2.4. Show the identity

⟨α, β⟩S = (−1)n(n−1)/2⟨β, α⟩S . (2)

Write the Chevalley pairing explicitly in the case of a 4-dimensional,
3-dimensional, and 2-dimensional manifold. Verify that the Chevalley
pairing is symmetric in the first case, and skew-symmetric in the second
and third cases.

The Courant bracket

The Lie bracket of vector fields is dual to the de Rham exterior deriva-
tive, in a sense made precise by the following identity, for all vector
fields X,Y and differential forms ρ:

i[X,Y ]ρ = [[d, iX ], iY ]ρ.

In view of our earlier discussion of the action of TM on forms, we may
extend the Lie bracket to a Courant bracket, as follows. Recall that
c(X + ξ) = (X + ξ)· denotes the Clifford action of a section of TM .

c([X + ξ, Y + η]) = [[d, c(X + ξ)], c(Y + η)]. (3)

Exercise 2.5. With the above definition, prove that

[X + ξ, Y + η] = [X,Y ] + LXη − iY dξ.

Note that this bracket is not skew-symmetric, and satisfies

[X + ξ,X + ξ] = d⟨X + ξ,X + ξ⟩,

or, more generally,

[X + ξ, Y + η] + [Y + η,X + ξ] = 2d⟨X + ξ, Y + η⟩.

In particular, if sections are taken from an isotropic subbundle of TM ,
the bracket will be skew-symmetric.

In fact, the Courant bracket satisfies a version of the Jacobi identity,
as follows.
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Exercise 2.6. Using the definition (3), prove the Jacobi identity for
the Courant bracket, i.e.

[[X + ξ, Y + η], Z+ ζ] = [X + ξ, [Y + η, Z+ ζ]]− [Y + η, [X + ξ, Z+ ζ]].

Remark 2.7. The Courant bracket is close to being a Lie algebra. In
fact, as shown in [32], it defines a L∞ algebra structure on the following
complex, concentrated in degrees −1, 0:

C∞(M,R) d // C∞(TM) .

The binary bracket (of degree zero) vanishes in degree −1 and is the
skew-symmetrization of the Courant bracket in degree 0. Between
degrees −1 and 0, the bracket is [X + ξ, f ] = 1

2X(f), and finally the
ternary bracket (of degree −1) has only one component, namely

[X + ξ, Y + η, Z + ζ] = 1
3 (⟨[X + ξ, Y + η], Z + ζ⟩+ c.p.).

It is natural to ask whether any part of the Lie algebra so(TM, ⟨·, ·⟩)
acts in such a way as to preserve the Courant bracket. Focusing on B-
field transformations, we obtain the following identity: let U = X + ξ,
V = Y + η and B ∈ Ω2(M). Then from the following identity:

[[d, e−Bc(U)eB ], e−Bc(V )eB ] = e−B [[eBde−B , c(U)], c(V )]eB ,

and using the fact that

eBde−B = d− dB ∧ ·,

we conclude that under the condition that B is closed, the B-field
transformation eB is a symmetry of the Courant bracket, namely

[eB(X + ξ), eB(Y + η)] = eB [X + ξ, Y + η].

Exercise 2.8. Fill in the details in the above argument. Also, try to
prove the fact that closed B-field transformations are the only sections
of so(TM, ⟨·, ·⟩) that preserve the Courant bracket. See [19] for a proof.

In the above argument, we saw that if B ∈ Ω2(M) is not closed,
then it does not preserve the Courant bracket; instead it takes the
Courant bracket to a twisted Courant bracket, that is,

[eB(U), eB(V )] = eB [U, V ]dB ,
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where the bracket on the right hand side is defined in the same way as
the Courant bracket, but for the differential

(d− dB ∧ ·) : Ωev/od(M) → Ωod/ev(M).

Generalizing the above operator slightly, we may define, for any closed
3-form H, a twisted de Rham operator

dH = (d−H ∧ ·) : Ωev/od(M) → Ωod/ev(M),

and a twisted Courant bracket

c([X + ξ, Y + η]H) = [[dH , c(X + ξ)]c(Y + η)].

Exercise 2.9. Prove that the twisted Courant bracket is given by

[X + ξ, Y + η]H = [X,Y ] + LXη − iY dξ + iY iXH.

In the study of 2-dimensional sigma models in physics, the closed
3-form H is known as the Wess–Zumino term, and in string theory it
is known as the Neveu–Schwarz 3-form flux. In these theories, it is
important that H has integral periods, and in fact it should be viewed
as the curvature of a U(1) gerbe with connection and curving.

Given a manifold M equipped with a closed 3-form H, the tuple
(TM, ⟨·, ·⟩, [·, ·]H) is known as an exact Courant algebroid. The action
of B-field transformations provides isomorphisms

[eB(U), eB(V )]H = eB [U, V ]H+dB (4)

between Courant algebroids whose 3-forms are cohomologous. Indeed,
as shown in [35], exact Courant algebroids are classified by the coho-
mology class [H] ∈ H3(M,R), known as the Ševera class.

2.2 Generalized metrics

The structure group of the metric bundle TM is O(n, n); a reduction
to the maximal compact subgroup O(n)×O(n) is called a generalized
Riemannian metric.

Definition 2.10. A generalized Riemannian metric is a maximal positive-
definite subbundle

V+ ⊂ TM. (5)

The orthogonal complement V− = V ⊥
+ relative to the split-signature

metric is then maximally negative-definite, and we have a decomposi-
tion, orthogonal with respect to ⟨·, ·⟩, as follows:

TM = V+ ⊕ V−.
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Since the subbundles TM, T ∗M of TM are null, in fact maximal isotropic,
it follows that the projection along T ∗M , i.e.

π : TM → TM,

defines an isomorphism of bundles

V± π

∼= // TM .

Exercise 2.11. Prove that a generalized Riemannian metric is given
by the graph of a general 2-tensor g + b ∈ C∞(S2T ∗ ⊕ ∧2T ∗) whose
symmetric part g is positive-definite. That is,

V+ = {X + g(X) + b(X) : X ∈ TM}.

Conclude that the orthogonal complement is then given by

V− = {X − g(X) + b(X) : X ∈ TM}.

Since a generalized Riemannian metric determines the decomposi-
tion (5), it can be described in terms of an operator G : TM → TM
as follows:

G = 1|V+
+ (−1)|V− .

Exercise 2.12. If the generalized Riemannian metric is given by g+ b
as above, show that the corresponding operator is, in block form,

G =

(
1 0
b 1

)(
0 g−1

g 0

)(
1 0
−b 1

)
=

(
−g−1b g−1

g − bg−1b bg−1

)
.

Generalized Hodge star

Assume we are on an oriented manifold, and choose an oriented or-
thonormal basis (e1, . . . , en) for V+ over any point. Then the product

∗ = en · · · e1 ∈ Cl(V+) ⊂ Cl(TM)

is a well-defined element of the Clifford algebra, independent of the
chosen basis, and is therefore a global section of the Clifford algebra
bundle. We call this element the generalized Hodge star. It acts on
differential forms via the spin representation.
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Exercise 2.13. Prove that the classical Hodge star ⋆ can be obtained
from ∗ as follows. Assume b = 0, so that V+ = Gr(g), for g a Rieman-
nian metric. Then the Hodge star of g is

⋆ρ = (∗ρ)⊤.

Hint: Choose an oriented orthonormal basis (v1, . . . , vn) for TM , with
dual basis (vi = g(vi))

n
i=1, so that (ei = vi + vi)ni=1 defines an oriented

orthonormal basis for V+. Then verify using the Clifford action that

(vn + vn) · · · (v1 + v1) · (v1 ∧ · · · ∧ vk) = vn ∧ · · · ∧ vk+1.

Exercise 2.14. Prove the identity

∗2 = (−1)n(n−1)/2. (6)

Combining the above identity (6) with the identity (2) for the
Chevalley pairing, we see that the top degree differential form

⟨α, ∗β⟩S (7)

is symmetric in α and β. In fact, when b = 0, we have the identity

⟨α, ∗β⟩S = (α ∧ (∗β)⊤)n = (α ∧ ⋆β)n = g(α, β)volg,

where g(α, β) is the induced Riemannian metric on differential forms
and volg = ⋆1 = det(g)1/2 is the Riemannian volume form.

Exercise 2.15. Let ∗g+b be the generalized Hodge star for the gener-
alized metric g + b. Using (1), prove the identity

∗g+b = e−b ∗g eb.

Conclude that volg+b = ⟨1, ∗g+b1⟩ defines a volume form, called the
Born-Infeld or generalized Riemannian volume form, and verify that

volg+b = (1 + |b|2g + | b∧b
2! |

2
g + | b∧b∧b

3! |2g + · · · )volg. (8)

Let (vi)
n
i=1 be an oriented orthonormal basis with respect to g. As

a result, (vi + (g + b)(vi))
n
i=1 is an oriented orthonormal basis for V+.

Computing the corresponding Born-Infeld volume, we obtain

⟨1, ∗g+b1⟩ = (g + b)(v1) ∧ · · · ∧ (g + b)(vn) (9)

= det(g + b)(v1 ∧ · · · ∧ vn) (10)

= det(g + b) det(g)−1/2. (11)

Combining this with (8), we conclude that

det(g + b) = |eb|2g det g.
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Generalized harmonic forms

With these preliminaries out of the way, we may use (7) to define an
L2 inner product on spinors:

Definition 2.16. The Born-Infeld inner product of α, β ∈ S is defined
to be

h(α, β) =

∫
M

⟨α, ∗β⟩S .

This is the appropriate L2 metric for developing the Hodge theory
of the differential dH .

Exercise 2.17. Show that on a compact manifold M ,∫
M

⟨dHα, β⟩S = (−1)dimM

∫
M

⟨α, dHβ⟩S .

Conclude that the adjoint of dH with respect to the Born-Infeld inner
product is as follows:

d∗H = (−1)dimM ∗−1 dH ∗ . (12)

Since the operators dH , d∗H differ from d, d∗ by lower-order terms,
it follows that the associated Dirac operator dH + d∗H is elliptic, just
as in the case of b = 0. The associated twisted Laplacian

∆H = (dH + d∗H)2 = dHd∗H + d∗HdH

is then elliptic as an operator on forms of fixed parity. As usual, we
obtain a Hodge decomposition theorem:

Theorem 2.18. On a compact generalized Riemannian manifold, any
even or odd dH cohomology class has a unique ∆H-harmonic represen-
tative.

Exercise 2.19. Write the twisted Laplacian explicitly, in terms of the
usual Laplacian plus lower-order terms. Also, demonstrate that the
B-field transformation eB defines an isomorphism from ∆H -harmonic
forms to ∆H+dB-harmonic forms.

3 Generalized Kähler geometry

A Riemannian manifold (M, g) is Kähler when there is an integrable
complex structure I, compatible with g in the sense that I ∈ so(TM, g)
is an infinitesimal symmetry, i.e.

gI + I∗g = 0,
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and such that the associated Hermitian form ω = gI is closed, thereby
defining a symplectic form. The integrability of I and the closure of
ω may be subsumed in the equivalent condition that the Levi-Civita
connection preserves I, i.e. ∇I = 0, giving an alternative definition
of Kähler structure as a Riemannian manifold with holonomy (of the
Levi-Civita connection) contained in U(n). We now develop the no-
tion of generalized Kähler structure, which makes use of a generalized
complex structure compatible with a generalized Riemannian metric.
To describe the integrability of such a generalized complex structure,
we need the notion of a Dirac structure, which is a generalization of
an integrable distribution, or foliation.

3.1 Dirac structures

Fix a manifold M with closed 3-form H, and let (TM, ⟨·, ·⟩, [·, ·]H) be
the associated Courant algebroid.

Definition 3.1. A Dirac structure is an involutive maximal isotropic
subbundle L ⊂ TM .

Exercise 3.2. Prove that a maximal isotropic subbundle L ⊂ TM , if
it is transverse to T ∗M ⊂ TM , must be the graph of a 2-form, i.e. we
have

L = {X + ω(X) : X ∈ TM},

for some ω ∈ Ω2(M). Then show that C∞(L) is closed under the
Courant bracket if and only if dω = H. In particular, in the case
H = 0, closed 2-forms correspond to Dirac structures transverse to
T ∗M .

Exercise 3.3. Prove that a maximal isotropic subbundle L ⊂ TM , if
it is transverse to TM ⊂ TM , must be the graph of a bivector field,
i.e. we have

L = {β(ξ) + ξ : ξ ∈ T ∗M},

for some bivector field β ∈ C∞(∧2TM). Then show C∞(L) is closed
under the Courant bracket if and only if

[β, β] = (∧3β)(H),

where on the left we have the Schouten bracket of multivector fields.
Such a bivector field is called a twisted Poisson structure [36], and
when H = 0 this is simply a Poisson structure.

In general, a Dirac structure need not be transverse to TM or to
T ∗M , and its projection to TM defines a distribution with potentially
nonconstant rank. In a neighbourhood U of a point where πT (L)
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has constant rank, we have a distribution ι : F ↪→ TU and a 2-form
ω ∈ C∞(U,∧2F ∗), such that

L|U = {X + ξ ∈ TU : X ∈ F, ι∗ξ = iXω}.

Involutivity of L is then equivalent, in U , to the condition that F
is integrable to a foliation and that dω = ι∗H. In this way, we see
that Dirac structures are generalizations of Poisson structures in which
we have a singular foliation whose leaves are equipped with (possibly
degenerate) 2-forms which serve as primitives for the pullback of H.

3.2 Generalized complex structures

Recall that a complex structure is an endomorphism I ∈ C∞(End(TM))
such that I2 = −1 and such that the +i-eigenbundle T1,0M ⊂ TM⊗C
is involutive, meaning

[T1,0M,T1,0M ] ⊂ T1,0M.

We now generalize this to the exact Courant algebroid over M defined
by the closed 3-form H ∈ Ω3(M).

Definition 3.4. A generalized complex structure on (M,H) is a com-
plex structure J : TM → TM whose +i-eigenbundle

L = ker(J− i1) ⊂ TM ⊗ C

is a Dirac structure.

Note that the condition that L be maximal isotropic is equivalent
to J being an orthogonal transformation for the canonical metric on
TM .

Exercise 3.5. Let I ∈ End(TM) such that I2 = −1. Show that(
I 0
0 −I∗

)
defines a generalized complex structure if and only if I is a usual com-
plex structure and H has type (2, 1) + (1, 2).

Exercise 3.6. Let ω ∈ Ω2 be nondegenerate. Show that(
0 −ω−1

ω 0

)
defines a generalized complex structure if and only if ω is a symplectic
form and H = 0.
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One of the most intriguing aspects of generalized complex geometry
is that it unifies complex and symplectic structures. In general, a
generalized complex structure is a hybrid of complex and symplectic
structure; to be more precise, if we project L to TM ⊗C, we obtain a
complex distribution E. The corresponding real distribution ∆ = E∩E
then defines a singular symplectic foliation, deriving from a real Poisson
structure Q defined by

{f, g}Q = ⟨J(df), dg⟩.

The distribution E then defines an integrable complex structure trans-
verse to the leaves of the above foliation. In this sense, a generalized
complex manifold defines a singular symplectic foliation with a trans-
verse holomorphic structure. By now, many interesting generalized
complex manifolds are known, especially in dimension 4. See [10, 11]
for a construction of generalized complex structures on 4-manifolds
which do not admit either complex or symplectic structures. We shall
see some nontrivial examples of generalized complex structures in the
next section.

3.3 Generalized Kähler geometry

In this section we assume M is a compact manifold equipped with a
closed 3-formH, determining an exact Courant algebroid (TM, ⟨·, ·⟩, [·, ·]H).

Definition 3.7. A generalized Kähler structure is a pair (JA, JB) of
commuting generalized complex structures, such that the combination

−JAJB = G (13)

defines a generalized Riemannian metric.

The primary example is that of a Kähler structure, in which we
take

JA =

(
0 −ω−1

ω 0

)
, JB =

(
I 0
0 −I∗

)
.

Then these commute because the Kähler condition requires ωI+I∗ω =
0, and the product

−JAJB =

(
0 g−1

g 0

)
,

defining a generalized Riemannian metric with b = 0.
The fact that JA and JB commute immediately means that TM⊗C

decomposes as a direct sum of the common eigenspaces of this pair of
operators. More precisely,

TM ⊗ C = ℓ+ ⊕ ℓ− ⊕ ℓ+ ⊕ ℓ−,
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where the summands are simultaneously eigenbundles for JA and JB ,
according to the following chart:

JB
+i ℓ− ℓ+
−i ℓ+ ℓ−

−i i JA

That is, if LA = ker(JA − i1) and LB = ker(JB − i1), then we have

ℓ+ = LA ∩ LB ℓ− = LA ∩ LB .

Exercise 3.8. Using (13), show that the generalized metric may also
be described in terms of these four subbundles:

V+ ⊗ C = ℓ+ ⊕ ℓ+, V− ⊗ C = ℓ− ⊕ ℓ−. (14)

Bi-Hermitian structure

By projecting the four subbundles above to the tangent bundle, we
show that a generalized Kähler structure may be described equiva-
lently in terms of some recognizable geometric structures on the base
manifold.

We already know that V+ (and hence, V−) is the graph of g + b,
where g is a Riemannian metric and b ∈ Ω2(M,R). Since we have
the decomposition (14), and since the projection π : V± → TM is an
isomorphism, we see that a generalized Kähler structure determines
and is determined by a pair of complex structure I+ (coming from
projecting V+) and I− (coming from projecting V−). These are inte-
grable because ℓ± are Courant involutive and the projection to TM is
bracket-preserving. Since ℓ± are isotropic, it follows immediately that
I± are compatible with g, defining a pair of Hermitian structures with
coinciding metric, or a bi-Hermitian structure.

Given the generalized metric g + b and the complex structures I±,
we have the associated Hermitian 2-forms

ω± = gI±,

and we may use these forms to express the subbundles ℓ±, in the
following way.

ℓ+ = {X + (g + b)X : X ∈ T+
1,0M} (15)

= {X − iω+(X) + b(X) : X ∈ T+
1,0M} (16)
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Now that ℓ+ has been expressed as the partial graph of a 2-form, we
may express the involutivity of ℓ+ in terms of the derivative of this 2-
form. Note that ℓ+ is involutive because it is the intersection LA ∩LB

of Dirac structures.
In particular, the involutivity condition can be expressed as follows:

[eb−iω+X, eb−iω+Y ]H = eb−iω+ [X,Y ] ∀X,Y ∈ C∞(T+
1,0M).

Now using (4), we see that the above holds if and only if

iX iY (H + db− idω+) = 0 ∀X,Y ∈ C∞(T+
1,0M). (17)

Exercise 3.9. Using the above as a model, show that ℓ− is involutive
if and only if

iX iY (H + db+ idω−) = 0 ∀X,Y ∈ C∞(T−
1,0M). (18)

Equation (17) is equivalent to the condition that the (3, 0) and (2, 1)
components of the 3-form H + db− idω+ vanish: Letting H + db = H0

for simplicity, this is equivalent to the system:

H3,0
0 = 0 (19)

H2,1
0 = i∂ω+. (20)

Equivalently, H0 must have type (2, 1) + (1, 2) with respect to I+ and
ω+ must satisfy

dc+ω+ = i(∂ − ∂)ω+ = −H0.

Exercise 3.10. Show that the corresponding conditions for ω− are
that H0 must be of type (2, 1)+ (1, 2) with respect to I− and ω− must
satisfy

dc−ω− = H0.

The above is the main argument needed for proving the following
result.

Theorem 3.11 ([23]). A Generalized Kähler structure (JA, JB) on the
Courant algebroid defined by (M,H) is equivalent to a generalized Rie-
mannian metric g + b and two complex structures I±, each compatible
with g, such that the corresponding Hermitian forms ω± = gI± satisfy

−dc+ω+ = dc−ω− = H + db. (21)

If we mod out by B-field gauge equivalence, then we may eliminate b
in the above data.
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It is in the bi-Hermitian form above that Gates, Hull, and Roček
originally discovered generalized Kähler geometry. Note that Equa-
tion 21 implies that ω± are not closed but rather satisfy the pluriclosed
condition

ddc±ω± = 0.

This is particularly interesting in the case that the cohomology class
[H] is nonzero: then the pluriclosed condition contradicts the ∂-∂
Lemma of Kähler geometry, implying that a generalized Kähler man-
ifold with [H] ̸= 0 cannot admit a Kähler metric. In particular it
cannot be a projective algebraic variety.

Generalized Hodge decomposition

Since we have a pair (JA, JB) of elements of so(TM), they act on
differential forms via the spin representation, inducing a Z×Z grading
via the common eigenvalues of JA amd JB .

Let Up,q ⊂ Ω∗(M,C) consist of the differential forms which are
eigenvectors of both JA and JB with eigenvalues (ip, iq) respectively.
In this way we obtain a (p, q) decomposition of the differential forms
into the following diamond:

U0,n

· · · · · ·
U−n+1,1 Un−1,1

U−n,0 · · · Un,0

U−n+1,−1 Un−1,−1

· · · · · ·
U0,−n

This decomposition is orthogonal with respect to the Born-Infeld met-
ric, and gives rise to the following decomposition of the exterior deriva-
tive:

dH = δ+ + δ− + δ+ + δ−,

where the differential operators act as follows:

Up−1,q+1 Up+1,q+1

Up,q

δ−

dd
δ+

::

δ+zz

δ−

$$
Up−1,q−1 Up+1,q−1

Using a similar argument as in (12), we easily obtain the relation of
adjointness between these operators, which is a generalization of the
Kähler identities:
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Exercise 3.12 (hi). Prove the generalized Kähler identities

δ
∗
+ = −δ+ and δ

∗
− = δ−.

These simple identities imply the equality of all available Laplacians:

∆dH
= 4∆δ±

= 4∆δ± ,

and so, finally, we obtain a (p, q) decomposition for the twisted coho-
mology of any compact generalized Kähler manifold.

Theorem 3.13 (Hodge decomposition). The twisted cohomology of a
compact 2n-dimensional generalized Kähler manifold carries a Hodge
decomposition:

H•
dH

(M,C) =
⊕

|p+q|≤n
p+q≡n(mod 2)

Hp,q,

where Hp,q are ∆dH
-harmonic forms in Up,q.

Note that in the usual Kähler case, this (p, q) decomposition is not
the Dolbeault decomposition: it was called the Clifford decomposition
by Michelsohn [31], and there is an orthogonal transformation, called
the Hodge automorphism, taking it to the usual Dolbeault decomposi-
tion. A striking feature of the Clifford decomposition is that a form of
type (p, q) is closed if and only if it is co-closed and hence harmonic.

3.4 Examples

There are two main sources of examples of generalized Kähler metrics:

Example 3.14 (The even-dimensional compact semi-simple Lie groups).
It has been known since the work of Samelson [34] and Wang [37]
that any compact even-dimensional Lie group admits left- and right-
invariant complex structures I+, I− respectively, and that if the group
is semi-simple, these can be chosen to be Hermitian with respect to the
bi-invariant metric induced from the Killing form g = ⟨, ⟩. The idea,
then, is to use (g, I+, I−) as a bi-Hermitian structure with b = 0 and
to show that it is integrable with respect to H(X,Y, Z) = ⟨[X,Y ], Z⟩,
the bi-invariant Cartan 3-form.

To see that this works, we compute dc+ω+:

A = dc+ω+(X,Y, Z) = dω+(I+X, I+Y, I+Z)

= −ω+([I+X, I+Y ], I+Z) + c.p.

= −⟨[I+X, I+Y ], Z⟩+ c.p.

= −⟨I+[I+X,Y ] + I+[X, I+Y ] + [X,Y ], Z⟩+ c.p.

= (2⟨[I+X, I+Y ], Z⟩+ c.p.)− 3H(X,Y, Z)

= −2A− 3H(X,Y, Z),
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Proving that dc+ω+ = −H. Since the right Lie algebra is anti-isomorphic
to the left, the same calculation with I− yields dc−ω− = H, and finally
we have

−dc+ω+ = dc−ω− = H,

as required.

The other large source of generalized Kähler structures comes from
compact holomorphic Poisson Kähler manifolds. In [24], we find the
following result:

Theorem 3.15. Let (M, I, σ) be a compact holomorphic Poisson man-
ifold, so that σ ∈ H0(∧2T1,0M) satisfies [σ, σ] = 0, and let ω be a
Kähler form. Then there is an analytic family of generalized Kähler
structures (JA(t), JB(t)), for t in a nonempty neighbourhood of 0 ∈ R,
which coincides with the given Kähler structure at t = 0 and has
the property that its underlying bi-Hermitian structure (I+(t), I−(t))
is such that I+(t) = I remains constant while I−(t) evolves in such a
way that

− 1
4 [I+(t), I−(t)]g

−1 = tRe(σ),

and furthermore, I−(t) deforms with Kodaira-Spencer class given by
[σ(ω)] ∈ H1(T ).

Using the above result, we obtain nontrivial generalized Kähler
deformations of Kähler manifolds which admit a holomorphic Poisson
structure. Examples include the complex projective spaces, which have
many interesting holomorphic Poisson structures [12].
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