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Given a field K and an algebraic variety X defined over K, it is a central question
in arithmetic geometry to determine whether X has rational points. From a number
theoretic perspective, this question is often asked for some specific fields, for instance
number fields or function fields of curves over finite fields, and one tries to relate the
strong arithmetic properties of those fields to the behaviour of rational points on vari-
eties defined over them.

In this course, we will choose a less arithmetic and more algebraic approach: we will
aim at relating the algebraic internal properties of quite general fields to the behaviour
of rational points on varieties defined over them. More precisely, given a large class of
algebraically defined fields, we would like to determine if there are large classes of vari-
eties defined over them that automatically have rational points.

For that purpose, the first two steps should consist in:

• understanding what we mean by "algebraic internal properties" of fields;

• understanding which "large classes of varieties" are suitable to be studied in this
context.

Remark 0.1. These course notes are intended to be understandable by Master students.

1. Galois cohomology

In order to encode the "internal algebraic properties" of fields, we start by introducing
Galois cohomology.

Definition 1.1. Let K be a field and let GK := Gal(Ksep/K) be its absolute Galois group.
A Galois module over K is a (discrete) abelian group M endowed with a continuous action
of the profinite group GK such that, for all g ∈ GK , the map

φg :M →M

m 7→ g ·m

is a group homomorphism.

Example 1.2.

1. Any abelian group with the trivial action of GK .
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1 Galois cohomology

2. The abelian groups Ksep, Ksep× and µn(K) := {x ∈ Ksep× : xn = 1} for n coprime
to the characteristic of K are naturally Galois modules over K.

Now set:

K0(GK ,M) :=M,

Ki(GK ,M) := {continuous functions f : GiK →M},

and consider the sequence:

K0(GK ,M)
d0−→ K1(GK ,M)

d1−→ K2(GK ,M)
d2−→ ...

where the coboundary map di is defined as follows:

dif(g1, ..., gi+1) = g1f(g2, ..., gi+1)+

i∑
j=1

(−1)if(g1, ..., gjgj+1, ..., gi+1)+(−1)i+1f(g1, ..., gi).

One can easily check that it is a complex: di ◦ di−1 = 0 for all i.

Definition 1.3. We define the Galois cohomology groups of M as:

H0(K,M) :=MGK = {m ∈M : ∀g ∈ GK , g ·m = m},
H i(K,M) := Ker(di)/Im(di−1) for i > 0.

Example 1.4.

H1(K,M) =
{f : GK

cont−−→M |∀s, t ∈ GK , f(st) = f(s) + sf(t)}
{f : GK →M |∃m ∈M, ∀s ∈ GK , f(s) = s ·m−m}

.

Therefore, if GK acts trivially on M :

H1(K,M) = Homcont(GK ,M).

For instance, H1(K,Z) is trivial and H1(K,Q/Z) is the character group of GK . This
last group encodes important Galois theoretic properties of K.

Galois cohomology enjoys a certain number of nice properties that allow to carry out
computations. For instance:

1. Long exact sequence. Any short exact sequence of Galois modules:

0 → A
f−→ B

g−→ C → 0

induces a natural long exact sequence:

0 → H0(K,A)
f∗−→ H0(K,B)

g∗−→ H0(K,C)

→ H1(K,A)
f∗−→ H1(K,B)

g∗−→ H1(K,C)

→ H2(K,A)
f∗−→ H2(K,B)

g∗−→ ...
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1 Galois cohomology

2. Restriction-corestriction. If L/K is a finite extension, the Galois group GL is
a subgroup of GK and hence there is a restriction map:

ResL/K : H i(K,M) → H i(L,M)

for every Galois module M . When i = 0, one can also easily construct a corestric-
tion morphism in the other direction:

CorL/K : H0(L,M) → H0(K,M)

m 7→
∑

σ∈GK/GL

σm

that satisfies CorL/K ◦ResL/K = [L : K]. This construction can in fact be extended
to higher-degree cohomology to get for each i a morphism:

CorL/K : H i(L,M) → H i(K,M)

such that CorL/K ◦ ResL/K = [L : K].

3. Cohomology of the additive group. For every i ≥ 1, the group H i(K,Ksep) is
trivial.

4. Hilbert’s Theorem 90. The group H1(K,Ksep×) is trivial.

Let us illustrate cohomology groups computations through two simple but important
examples.

Example 1.5.

1. Kummer theory. Let n be an integer prime to char(K). We have an exact
sequence of Galois modules:

1 → µn(K
sep) → Ksep× → Ksep× → 1,

hence an exact sequence of abelian groups:

K× → K× → H1(K,µn(K
sep)) → H1(K,Ksep×),

in which the first arrow is the n-th power map and the last group is trivial by
Hilbert’s Theorem 90. We deduce that the group H1(K,µn(K

sep)) is isomorphic
to K×/K×n and hence encodes information on the multiplication operation on K.

2. Artin-Schreier. Let p := char(K) > 0. We have an exact sequence of Galois
modules:

0 → Z/pZ → Ksep ϕ−→ Ksep → 0,

where ϕ(x) = xp − x. We therefore get a long exact sequence:

0 → Z/pZ → K
ϕ−→ K → H1(K,Z/pZ) → H1(K,Ksep) → H1(K,Ksep) → H2(K,Z/pZ) → ...

Since H i(K,Ksep) = 0 for all i > 0, we deduce that H1(K,Z/pZ) = K/ϕ(K) and
H i(K,Z/pZ) = 0 for i > 1.
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1 Galois cohomology

For our purposes, we will focus on an invariant that measures in some sense the com-
plexity of the Galois cohomology of a field and that is called the cohomological dimension
of the field.

Definition 1.6. Let K be a field.

1. Let p be a prime number. The p-cohomological dimension cdp(K) of K is the
largest integer n such that, for each r ≥ n+1, for each p-torsion Galois module M
over K, the group Hr(K,M) vanishes.

2. The cohomological dimension cd(K) of K is the supremum of the cdp(K) when
p describes all primes numbers. It is also the largest integer n such that, for each
r ≥ n+1, for each torsion Galois module M over K, the group Hr(K,M) vanishes.

Note that the cohomological dimension of a field only depends on its absolute Galois
group. The next examples illustrate the behaviour of the cohomological dimension.

Example 1.7.

1. A field has cohomological dimension 0 if, and only if, K is separably closed.

2. Finite fields have cohomological dimension 1.

3. p-adic fields have cohomological dimension 2. More generally, if K is a complete
discrete valuation field with residue field k and if p ̸= char(k), then we have
cdp(K) = cdp(k) + 1.

4. If k is a field and p is a prime number different from char(k), then we have
cdp(k(T1, . . . , Tn)) = cdp(k) + n.

5. Take p = char(K). Recall that, according to example 1.5, the group H i(K,Z/pZ)
is trivial whenever i > 1. In fact, one can even prove that cdp(K) is always at most
1. Because of this fact, the previous two examples fail when p = char(k).

The last three examples suggest that our definition of the p-cohomological dimension
is not the good definition when p = char(K). One way to modify that definition consists
in using the fppf cohomology. We will however give here a much more elementary and
explicit definition in terms of differentials that can be used for computations.

Definition 1.8 (Kato, [Kat82]). Assume that K has characteristic p > 0. Consider the
absolute differential module Ω1

K/Z, defined as the quotient of
⊕

x∈K K ·dx by the relations:

dr, r ∈ Z; d(x+ y)− dx− dy, x, y ∈ K; d(xy)− xdy − ydx, x, y ∈ K.

Let ΩiK be the i-th exterior product over K of the absolute differential module Ω1
K/Z and

let H i+1
p (K) be the cokernel of the morphism piK : ΩiK → ΩiK/d(Ω

i−1
K ) defined by

x
dy1
y1

∧ ... ∧ dyi
yi

7→ (xp − x)
dy1
y1

∧ ... ∧ dyi
yi

mod d(Ωi−1
K ),

for x ∈ K and y1, ..., yi ∈ K×. The p-cohomological dimension cdp(K) of K is the
smallest integer δ (or ∞ if such an integer does not exist) such that [K : Kp] ≤ pδ and
Hδ+1
p (L) = 0 for all finite extensions L of K.
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2 Principal homogeneneous spaces

This definition is modeled so that the following (quite difficult) results hold:

Theorem 1.9. Let k be a field of characteristic p > 0.

1. (Kato, [Kat82]) Let K be a complete discrete valuation field with residue field k.
Then cdp(K) = cdp(k) + 1.

2. (Kato-Kuzumaki, [KK86]) For n ≥ 0, we have cdp(k(T1, . . . , Tn)) = cdp(k) + n.

2. Principal homogeneneous spaces

We are now going to introduce the varieties we will be interested in during this course.

Definition 2.1. Let K be a field and let G be an algebraic group over K. A principal
homogeneous space (or a torsor) under G is a variety X endowed with a (right) action
f : X ×K G→ X such that π : X ×k G→ X ×k X, (x, g) 7→ (x, x · g) is an isomorphism.
When K is perfect, this last condition means that G(Ksep) acts simply and transitively
on X(Ksep).

Example 2.2.

1. An algebraic group G is naturally a torsor under itself: it is called the trivial torsor.

2. Given a positive integer n prime to char(K) and an element a ∈ K×, the equation
xn = a defines a torsor under µn.

3. Given a finite separable extension L/K and an element a ∈ K×, the equation
NL/K(x) = a defines a torsor under the torus given by the equation NL/K(x) = 1.

4. A smooth projective genus 1 curve is always a torsor under an elliptic curve, its
Jacobian.

To simplify, we assume for the time being that K is a perfect field. Let G be an
algebraic group over K, let X be some torsor under G and let X0 be the trivial torsor.
One can easily check that X is trivial, that is isomorphic to X0, if, and only if, X has a
rational point. In particular, XKsep ∼= X0,Ksep .

It turns out that in algebra there is a very practical method, called Galois descent,
to classify algebraic objects that become isomorphic over the separable closure of a field.
Indeed, let us take K a perfect field, fix some algebraic object X0 defined over K (for
instance a vector space, a K-algebra, a K-variety) and consider all algebraic objects X
defined over K such that XKsep ∼= X0,Ksep . Such objects are called twisted forms of X0.

Now set H := AutKsep(X0,Ksep). The group GK acts on X0,Ksep , and hence it acts
on H by conjugation. Given a twisted form X of X0 together with an isomorphism:

ϕ : X0,Ksep → XKsep ,

one can then easily check that the map:

fX : GK → H

σ 7→ ϕ−1 ◦ σ(ϕ)
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2 Principal homogeneneous spaces

satsifies the functional equation:

fX(στ) = fX(σ) ◦ σ(fX(τ)).

Moreover, if ϕ′ : X0,Ksep → XKsep is another isomorphism and f ′X stands for the map:

f ′X : GK → H

σ 7→ ϕ′−1 ◦ σ(ϕ′)

then:
∀σ ∈ GK , fX(σ) = c−1 ◦ f ′X(σ) ◦ σ(c)

where c = ϕ′ ◦ ϕ ∈ H. In other words, we have associated to the twisted form X a class
[X] in:

H1(K,H) :=
{f : GK → H|∀σ, τ ∈ GK , f(στ) = f(σ) ◦ σ(f(τ))}

∼
where f ∼ f ′ if:

∃c ∈ H,∀σ ∈ GK , f(σ) = c−1 ◦ f ′(σ) ◦ σ(c).

This yields a map:

θ :
{twisted forms of X0}

∼=
→ H1(K,H)

sending the class of X0 to the constant function equal to 1.

Theorem 2.3 (Galois descent). Endow the sets {twisted forms of X0}/ ∼= and H1(K,H)
with pointed set structures by deciding that the distinguished elements are X0 and the
constant function equal to 1 respectively. The map θ is then a bijection of pointed sets.

This principle can be applied in many situations. Here are some examples:

1. Vector spaces. The automorphism group of the vector space (Ksep)n is GLn(Ksep),
hence n-dimensional vector spaces over K are classified up to isomorphism by
H1(K,GLn). Since there is only one isomorphism class of n-dimensional vector
spaces over K, we get H1(K,GLn) = {1}. When n = 1, we recover Hilbert’s
Theorem 90.

2. Quadratic forms. The set H1(K,On) classifies non-degenerate quadratic forms over
K up to isometry.

3. Central simple algebras. A finite-dimensional algebra A over a field K is said to be
central simple if its only two-sided ideals are 0 and A itself and its center is reduced
to K. According to a Theorem of Wedderburn, this is equivalent to the fact that
A⊗KK

sep is a matrix algebra Mn(K
sep) for some n. Moreover, the automorphism

group of the algebra Mn(K
sep) is PGLn(K

sep). Hence central simple algebras of
dimension n2 are classified by H1(K,PGLn). Moreover, for each n, we have an
exact sequence:

1 → Gm → GLn → PGLn → 1,

hence an exact sequence of pointed sets:

{1} = H1(K,GLn) → H1(K,PGLn)
ψn−−→ H2(K,Ksep×).

6



3 Serre’s Conjecture I

Thanks to the maps (ψn)n≥1, we can associate to each central simple algebra A of
any dimension a class [A] in the so-called Brauer group Br(K) := H2(K,Ksep×).
In fact, one can prove that the Brauer group classifies central simple algebras over
K up to Brauer equivalence:

A ∼ B ⇔ ∃m,n,A⊗Mm(K) ∼= B ⊗Mn(K).

For more information on central simple algebras, the reader may refer to [GS17].

Coming back to the case of G-torsors for G some algebraic group over K, the au-
tomorphism group of the trivial G-torsor over Ksep is G(Ksep). Hence, Galois descent
tells us that torsors under G are classified by the cohomology pointed set H1(K,G). Of
course, the distinguished point in this pointed set corresponds to the trivial torsor.

In the sequel of this course, we will focus on the following more precise version of the
questions raised in the introduction of this text: how do rational points on principal ho-
mogeneous spaces behave when one works over fields with low cohomological dimension?
We start by discussing the case of one-dimensional fields.

3. Serre’s Conjecture I

Let us start by an easy observation. Take K a field with cd(K) ≤ 1. Let T be a K-torus
and let L be a finite separable extension of K that splits T . By Hilbert’s Theorem 90,
we have H1(L, T ) = 0. Hence, by a restriction-corestriction argument, the abelian group
H1(K,T ) is killed by [L : K]. But, for each integer n > 0, we have an exact sequence of
Galois modules:

1 → T [n] → T
·n−→ T → 1

and hence a long exact sequence:

H1(K,T [n]) → H1(K,T )
·n−→ H1(K,T ) → H2(K,T [n]) = 0

in which H2(K,T [n]) is trivial because K has cohomological dimension ≤ 1. We deduce
that the group H1(K,T ) is divisible. Since it has finite exponent, it is in fact trivial.

In other words, every principal homogeneous space under a torus over a field with
cohomological dimension ≤ 1 has rational points. It is therefore natural to ask what
happens when one replaces the torus T by more general linear groups:

Conjecture 3.1 (Serre’s Conjecture I). Let K be a field with cd(K) ≤ 1. Then every
principal homogeneous space under a reductive group1 has a rational point.

This conjecture is nowadays a theorem due to Steinberg in 1965 for perfect fields
([Ste65]) and to Borel-Springer in 1968 for general fields ([BS68]).

Sketch of proof. Let G be a reductive group. We want to prove that H1(K,G) is trivial.

• Step 1: Case when G is a torus. This is the particular case we already proved at
the beginning of the section!

1In these notes, reductive groups are always assumed to be connected.
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4 Quadratic forms and Milnor’s Conjecture

• Step 2: Case when G is quasi-split. According to a Theorem of Springer:

H1(K,G) =
⋃
T⊂G

Im
(
H1(K,T ) → H1(K,G)

)
,

where T runs over the maximal K-tori of G. Hence H1(K,G) is trivial.

• Step 3: General case. By a twisting argument, one can prove that there exists a
quasi-split reductive group H and a bijection between H1(K,G) and H1(K,H).
Hence H1(K,G) is trivial.

Remark 3.2. In Conjecture 3.1, if one assumes that K is perfect, one can prove that
principal homogeneous spaces under an arbitrary connected linear group are trivial (this
follows from the triviality of H1(K,Ksep) and from the fact that every unipotent group
has a dévissage by additive groups). However, there exist imperfect fields K and con-
nected unipotent groups U over K such that H1(K,U) is not trivial. For instance, as an
exercise, the reader might want to prove that, if K = Fsep

p ((t)) for some odd prime p and
U is the (connected unipotent) subgroup of Ga ×Ga given by the equation yp− y = tzp,
then H1(K,U) is not trivial.

We will now move on to the case of two-dimensional fields, which is the core of this
mini-course.

4. Quadratic forms and Milnor’s Conjecture

Let K be a field with characteristic other than 2. According to a Theorem of Witt, any
quadratic form q over K can be written as an orthogonal sum q = qti ⊥ qh ⊥ qan where:

• qti is totally isotropic, i.e. qti = 0.

• qh is hyperbolic, i.e. qh ∼= Hm for some m ≥ 0, where H = ⟨−1, 1⟩ is the hyperbolic
plane.

• qan is anisotropic, i.e. qan(v) = 0 implies v = 0.

In order to classify anisotropic quadratic forms over K, one may introduce the Witt ring
W (K) of K. As a set, W (K) consists of all anisotropic quadratic forms over K up to
isometry. Its addition and its multiplication are defined thanks to the orthogonal sum
and the Kronecker’s tensor product of quadratic forms:

q + q′ = (q ⊥ q′)an,

q · q′ = (q ⊗ q′)an.

Here, if q = ⟨d1, . . . , dr⟩ and q′ = ⟨d′1, . . . , d′s⟩, then q ⊗ q′ is the diagonal quadratic form
⟨did′j : i, j⟩.

The set I(K) of even-dimensional anisotropic quadratic forms over K forms an ideal
I(K) in W (K) called the fundamental ideal. It is generated by the so-called 1-fold Pfister
forms:

⟨⟨a⟩⟩ := ⟨1,−a⟩, a ∈ K×.

8



4 Quadratic forms and Milnor’s Conjecture

There is of course an isomorphism given by dimension modulo 2:

e0 :W (K)/I(K) → Z/2Z = H0(K,Z/2Z)
q 7→ dim (q) mod 2.

This is the first invariant one might consider to classify anisotropic quadratic forms.
A second invariant is given by the discriminant disc(q), that is the determinant in

K×/K×2 of the matrix in some basis of q. It induces a group morphism:

d : I(K) → K×/K×2

q 7→ (−1)dim q/2disc(q).

Now observe that the ideal I(K)2 is spanned 2-fold Pfister forms:

⟨⟨a, b⟩⟩ := ⟨⟨a⟩⟩ ⊗ ⟨⟨b⟩⟩ = ⟨1,−a,−b, ab⟩, a, b ∈ K×,

and all these quadratic forms belong to Ker(d). Hence d induces a morphism:

e1 : I(K)/I(K)2 → K×/K×2
= H1(K,Z/2Z),

and one can check as an exercise that this is an isomorphism.
These arguments can be continued to construct higher cohomological invariants of

quadratic forms. For each n ≥ 0, one can define a group homomorphism:

en : I(K)n/I(K)n+1 → Hn(K,Z/2Z)
⟨⟨a1, . . . , an⟩⟩ := ⟨⟨a1⟩⟩ ⊗ · · · ⊗ ⟨⟨an⟩⟩ 7→ fa1,...,an ,

where:

fa1,...,an : GnK → Z/2Z

(g1, . . . , gn) 7→
ϕ(g1(

√
a1))√

a1
. . .

ϕ(gn(
√
an))√

an

and ϕ is the isomorphism {−1, 1} → Z/2Z.

Theorem 4.1 (Milnor’s Conjecture [Mil70], proved in [Voe03], [OVV07], [Mor99], [Mor06],
[KS00]). For all n ≥ 0, the invariant en is an isomorphism.

Acconding to a Theorem of Arason-Pfister (Hauptsatz X.5.1 in [Lam05]), anisotropic
quadratic forms in I(K)n have dimension ≥ 2n, and hence the intersection

⋂
n≥0 I

n(K)
is always trivial. In other words, the invariants en for n ≥ 0 form a complete system of
invariants that does allow to distinguish non-isometric quadratic forms.

Now let us consider the case when K is a field with cohomological dimension ≤ 2.
One then has:

I(K)3 = I(K)4 = · · · = I(K)n = · · · =
⋂
n≥0

In(K) = 0.

In particular, for any a, b, c ∈ K×, the quadratic form ⟨⟨a, b, c⟩⟩ = ⟨1,−a,−b, ab⟩ ⊥
c⟨1,−a,−b, ab⟩ is isotropic. But the non-zero elements in the image of ⟨1,−a,−b, ab⟩
form a subgroup of K×, and hence the equation:

x2 − ay2 − bz2 + abt2 = c

automatically has solutions in K. This result turns out to be a very particular case of
Serre’s Conjecture II.
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5 Serre’s Conjecture II

5. Serre’s Conjecture II

Conjecture 5.1 (Serre’s Conjecture II [Ser62]). Let K be a field with cd(K) ≤ 2. Then
every principal homogeneous space under a semisimple simply connected group has a
rational point.

Recall that any semisimple simply connected group G can be written as a product of
Weil restrictions:

G =
n∏
i=1

RLi/K(Hi)

where each Hi is a semisimple simply connected absolutely almost simple group. We
then get:

H1(K,G) =
∏
i

H1(Li, Hi),

where each Li has cohomological dimension ≤ 2. Hence it suffices to prove Serre’s
Conjecture II for semisimple simply connected absolutely almost simple groups. Such
groups are classified by types corresponding to Dynkyn diagrams. There are four families
of classical types, that can be described as follows when the field K is perfect:

• An: this family contains two subfamilies:

◦ 1An: these are groups of the form SL(A) for A some central simple algebra.

◦ 2An: these are groups of the form SU(A, σ) where A is a central simple al-
gebra defined over a quadratic extension of K and endowed with a hermitian
involution σ.

• Bn: these are groups of the form Spin(V, q) where (V, q) is an odd-dimensional
non-degenerate quadratic space over K.

• Cn: these are groups of the form Sp(A, σ) where A is an even-dimensional central
simple algebra endowed with a symplectic involution σ.

• Dn (non-trialitarian for n = 4): these are groups of the form Spin(A, σ) where A is
an even-dimensional central simple algebra endowed with an orthogonal involution
σ.

For the reader’s convenience, we briefly recall some of the objects appearing in this
classification. According to a Theorem of Wedderburn, if A stands for a central simple
algebra over K, the Ksep-algebra A ⊗K Ksep is a matrix algebra Mn(K

sep). One can
then define the reduced norm of A as the composite group homomorphism:

NrdA : A× → (A⊗K Ksep)× ∼= Mn(K
sep)× → (Ksep)×,

and the group SL(A) stands for the kernel of the reduced norm.
An involution on the central simple algebra A is an additive and anti-multiplicative

map σ : A→ A such that σ2 = id. It is said to be of the first kind if it fixes the centerK of
A. In that case, σKsep = σ⊗ idKsep : Mn(K

sep) ∼= A⊗KK
sep → A⊗KK

sep ∼= Mn(K
sep)

is of the form:
m 7→ g−1 ·mt · g
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5 Serre’s Conjecture II

for some matrix g ∈ GLn(K
sep). The involution σ is said to be orthogonal (resp. sym-

plectic) if g is symmetric (resp. skew-symmetric). When σ is symplectic, the symplectic
group Sp(A, σ) is defined as:

Sp(A, σ) = {a ∈ A : aσ(a) = 1}.

Similarly, when σ is orthogonal, the special orthogonal group SO(A, σ) is defined as:

SO(A, σ) = {a ∈ A : NrdA(a) = 1, aσ(a) = 1}.

The spin group Spin(A, σ) is then a µ2-covering of SO(A, σ):

1 → µ2 → Spin(A, σ) → SO(A, σ) → 1.

An involution that is not of the first kind is said to be of the second kind, hermitian or
unitary. In that case, the elements of A fixed by σ form a subfield of K of degree 2. The
special unitary group SU(A, σ) is defined as:

SU(A, σ) = {a ∈ A : NrdA(a) = 1, aσ(a) = 1}.

For more information on involutions on central simple algebras and the properties of the
associated groups, the interested reader may refer to [KMRT98].

Of course, there are semisimple simply connected groups that do not lie in the previ-
ously mentioned four families of classical types. There are in fact six exceptional types:
G2, F4, E6, E7, E8 and trialitarian D4. Almost all articles dealing with Serre’s Con-
jecture II treat different types of groups separately. Some of them aim at proving the
conjecture for a given type, while others aim at proving the conjecture for all types over
a particular kind of field. In this course, we will mainly focus on the first point of view.
However, for the sake of completeness, we first very briefly mention the main known
results over specific fields.

5.1 Results in terms of fields

The first main result concerning specific fields deals with the case of complete discrete
valuation fields with perfect residue field. This case has been fully solved thanks to the
Bruhat-Tits theory:

Theorem 5.2 (Section 4.7 of [BT87]). Let K be a complete discrete valuation field with
perfect residue field k. Assume that cd(K) ≤ 2. Then Serre’s Conjecture II holds over
K.

Preuve. See Yisheng Tian’s course!

Of course, fields with more global behaviour have also been studied. In particular,
we have the following results:

Theorem 5.3.

(i) ([Kne65a, Kne65b], [Har65, Har66], [Che89]) Totally imaginary number fields sat-
isfy Serre’s Conjecture II.

(ii) ([CTGP04], [dJHS11]) Finite extensions of C(x, y) satisfy Serre’s Conjecture II.

(iii) ([CTGP04]) Finite extensions of C((x, y)) satisfy Serre’s Conjecture II.
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5 Serre’s Conjecture II

5.2 Known results in terms of groups

From now on, we focus on the study of groups of a given type over arbitrary fields of
cohomoplogical dimension ≤ 2. To simplify, unless otherwise stated, all fields in this
section will be assumed to be perfect.

5.2.1 Type 1An

Let us start with groups of type 1An. As we have seen, these are groups of the form
SL(A) for A some central simple algebra. In other words, they fit in an exact sequence,

1 → SL(A) → GL(A)
NrdA−−−→ Gm → 1.

hence an exact sequence:

A× NrdA−−−→ K× → H1(K,SL(A)) → H1(K,GL(A)),

in which the last term is trivial by Hilbert’s Theorem 90. In particular:

H1(K,SL(A)) ∼= K×/NrdA(A
×).

For instance, when A is the quaternion algebra:

(a, b) = K ⊕Ki⊕Kj ⊕Kk

with relations i2 = a, j2 = b and k = ij = −ji, we have:

NrdA(x+ yi+ zj + tk) = x2 − ay2 − bz2 + abt2.

Principal homogeneous spaces under SL(A) are then given by:

x2 − ay2 − bz2 + abt2 = c

for c ∈ K×, and we know by the results of section 4 that they have rational points.

The proof of that result crucially relied on the invariant e3 of quadratic forms:

e3 : I(K)3/I(K)4 → H3(K,Z/2Z)
⟨⟨a, b, c⟩⟩ 7→ fa,b,c,

where fa,b,c is the cocycle:

fa,b,c : G
3
K → Z/2Z

(g1, g2, g3) 7→
ϕ(g1(

√
a))√

a

ϕ(g1(
√
b))√

b

ϕ(gn(
√
c))√

c

and ϕ is the isomorphism {−1, 1} → Z/2Z. The construction of the cocycle fa,b,c is a
very particular case of the so-called cup-product in Galois cohomology. Indeed, whenever
P and Q are two Galois modules, we have a bilinear cup-product map:

∪ : H i(K,P )×Hj(K,Q) → H i+j(K,P ⊗Q)

(p, q) 7→ p ∪ q

12



5 Serre’s Conjecture II

where p ∪ q is given as a cocycle by:

(p ∪ q)(g1, . . . , gi+j) 7→ p(g1, . . . , gi)⊗ (g1 . . . gi) · q(gi+1, . . . , gi+j).

The invariant e3 can then described as:

e3(⟨⟨a, b, c⟩⟩) = A ∪ c,

where A = (a, b) ∈ Br(K)[2] = H2(K,Z/2Z) and c ∈ K×/K×2
= H1(K,Z/2Z).

Coming back to the general situation where A is any central simple algebra, denote
by n the order of [A] in Br(K) and assume that n is prime to char(K). We can then see
[A] as an element in H2(K,µn), and we have a group morphism:

rA : H1(K,µn) → H3(K,µn ⊗ µn) =: H3(K,Z/nZ(2))
t 7→ [A] ∪ t.

By identifying H1(K,µn) to K×/K×n, one can prove that NrdA(A×) is contained in the
kernel of rA, and hence rA induces an invariant, called Suslin’s invariant:

RA : H1(K,SL(A)) = K×/NrdA(A
×) → H3(K,Z/nZ(2)).

The following result is a difficult and deep result of Merkurjev and Suslin:

Theorem 5.4 (Th. 24.8 of [Sus85]). With the previous notations, if
√
dimA is square-

free, the invariant RA is injective. In particular, if cd(K) ≤ 2, then H1(K,SL(A)) is
trivial and the reduced norm NrdA : A× → K× is surjective.

A quite simple dévissage argument allows to extend the second part of the theorem to the
case where

√
dimA is any positive integer, and hence allows to settle Serre’s Conjecture

II for groups of type 1An.
Another more subtle dévissage argument allows to generalize the surjectivity of the

reduced norm of central simple algebras over cohomological dimension 2 fields to homo-
geneous varieties, in particular to varieties that parametrize Borel subgroups inside a
given semisimple group. This allows to prove the following generalization of Theorem
5.4, due to Gille:

Theorem 5.5 (Th. 6 of [Gil01]). Let K be a field with cd(K) ≤ 2. Let G be a semisimple
simply connected absolutely almost simple group over K and let µ be a finite central k-
subgroup of multiplicative type. Then the map:

(G/µ)(K) → H1(K,µ)

induced by the exact sequence 1 → µ→ G→ G/µ→ 1 is surjective.

When G = SL(A) and µ is the center of G, we recover Theorem 5.4. This generalization
will be crucial to settle Serre’s Conjecture II for other classical types.

13



5 Serre’s Conjecture II

5.2.2 Type Bn

Recall that groups of typeBn are of the form Spin(V, q) where (V, q) is an odd-dimensional
non-degenerate quadratic space over K. The following result is due to Merkurjev:

Theorem 5.6 (Merkurjev, unpublished). Serre’s Conjecture II holds for groups of type
Bn over perfect fields.

Sketch of proof. Let (V, q) be an odd-dimensional non-degenerate quadratic space over
a perfect field K with cohomological dimension ≤ 2. The idea consists in exploiting the
exact exact sequence:

SO(q)(K)
δ0−→ K×/K×2 → H1(K,Spin(q))

φ−→ H1(K,SO(q))
δ1−→ H2(K,µ2)

induced by the short exact sequence:

1 → µ2 → Spin(q) → SO(q) → 1

Take z ∈ H1(K,Spin(q)). By descent theory, its image in H1(K,SO(q)) corresponds to
a quadratic form q′ that has same dimension and discriminant as q. Moreover, one can
compute the map δ1 and check that δ1(q′) = e2(q

′) − e2(q), so that e2(q′) = e2(q
′). We

deduce that q − q′ ∈ I(K)3. Since K has cohomological dimension ≤ 2, the ideal I(K)3

is trivial. Hence q = q′ and z ∈ Kerφ. But according to Theorem 5.5 the map δ0 is
surjective and hence z is trivial.

5.2.3 Other classical types

Let us now move to the other classical types. The main result is due to Bayer and
Parimala:

Theorem 5.7 ([BP95]). Serre’s Conjecture II holds for groups of types 2An, Cn and Dn

(except trialitary D4) over perfect fields.

Sketch of proof. For each type one can use a similar method to the one described in
Theorem 5.6. Indeed, if G is a semisimple simply connected absolutely almost simple
group of type 2An, Cn or Dn (other than trialitary D4), it is of the form SU(A, σ),
Sp(A, σ) or Spin(A, σ), and the method consists in exploiting the exact sequence:

1 → µ→ G→ G/µ→ 1, (1)

where µ is the center of G and G/µ is the neutral connected component of the group
of automorphisms of A that commute with σ, and in writing the induced cohomological
exact sequence:

(G/µ)(K)
δ0−→ H1(K,µ) → H1(K,G)

φ−→ H1(K,G/µ)
δ1−→ H2(K,µ). (2)

One should then apply descent theory to check that elements in the pointed set Im (φ) =
Ker(δ1) correspond to certain kinds of unitary involutions on A when G is of type 2An,
to conjugacy classes of symplectic involutions on A when G is of type Cn, and to certain
kinds of orthogonal involutions on A when G is of type Dn. Finally, in each case, one
should prove, by using the assumption that the cohomological dimension of K is at
most 2, that such algebraic structures are always trivial. This is the hardest part in the
proof, but once such a result is settled, one can deduce that Im (φ) = Ker(δ1) is trivial.
Moreover, by Theorem 5.5, the map δ0 is surjective. Hence exact sequence (2) shows
that H1(K,G) is trivial.

14
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5.2.4 Some exceptional types

Methods similar to the ones we have used to study groups of classical types can in fact
also be used to study some exceptional types. Recall that, in order to study Serre’s
Conjecture II for groups of type 1An, we used the invariant e3 associated to quadratic
forms and Suslin’s invariant. These invariants can also be used to prove the following
result:

Theorem 5.8 ([BP95]). Serre’s Conjecture II holds for groups of types G2 and F4 over
perfect fields.

Rough idea of proof. One interprets groups of types G2 and F4 as automorphism groups
of concrete algebraic structures: the so-called Cayley algebras for type G2 and the so-
called exceptional Jordan algebras for type F4. By descent theory, this allows to interpret
the first cohomology sets of such groups as sets classifying forms of Cayley and Jordan
algebras. One then uses quadratic forms invariants and Suslin’s invariant to prove that
all such forms are trivial when one works on a field with cohomological dimension 2.

In fact, the e3 invariant of quadratic forms and Suslin’s invariant are particular cases
of a much more general construction, called the Rost invariant. More precisely, for each
semisimple simply connected group G over a field K, Rost constructed an invariant:

RG : H1(K,G) → lim−→H3(K,Z/nZ(2)) =: H3(K,Q/Z(2)).

The precise construction goes too far for this mini-course since it involves étale cohomol-
ogy, but the interested reader can refer to [Ser95].

The Rost invariant can for instance be used to study quasi-split groups, that is groups
that contain a Borel subgroup defined over K:

Theorem 5.9 ([Gar01], [KMRT98], [Gar10], [Che03], [Gil01]). Let G be a semisimple
simply connected quasi-split group over a field K. Assume that G has no E8 factors.
Then Rost’s invariant:

H1(K,G) → H3(K,Q/Z(2))

is injective. In particular, Serre’s Conjecture II holds for quasi-split groups of types other
than E8.

The interested reader may want to find some other results about exceptional types
in [Gil10] and [Gil19].

5.3 Imperfect fields

We now focus on the case of imperfect fields. Most of the results we have mentioned in
the previous sections are known to still hold over imperfect fields:

Theorem 5.10.

(i) ([Gil00]) Serre’s Conjecture II holds for groups of type 1An over imperfect fields.

(ii) ([BFT07]) Serre’s Conjecture II holds for groups of types 2An, Bn, Cn and Dn

(except trialitary D4) over imperfect fields.
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(iii) ([Gil00]) Serre’s Conjecture II holds for quasi-split groups without E8 factors over
imperfect fields.

A natural strategy to try to prove those results could consist in trying to reduce
to the characteristic zero case. Indeed, given a torsor Z under a semisimple simply
connected groupG defined over an imperfect field overK, one could try to find a complete
discrete valuation ring B with fraction field K̃ of characteristic zero and residue field K,
a semisimple simply connected group scheme G that lifts G, and a G-torsor Z that lifts
Z. Then one could try to apply Serre’s Conjecture II to the generic fiber Z̃ of Z, which
is a torsor under a semisimple simply connected group over the characteristic zero field
K̃.

However, described in this way, this argument fails. Indeed, the field K̃ has coho-
mological dimension 3, and hence Serre’s Conjecture II cannot be applied. Luckily, for
statements (i) and (iii) of the previous theorem, one can modify the argument to make it
work. The reason is that the corresponding results over perfect fields (Theorems 5.4 and
5.9) follow from stronger statements that apply to general fields of any cohomological
dimension:

• for groups of type 1An, Theorem 5.4 states that Suslin’s invariant is always injective
for central simple algebras A with

√
dimA square-free;

• for quasi-split groups without E8 factors, Theorem 5.9 states that Rost’s invariant
is always injective.

One can then use the fact that these statements hold over the cohomological dimension
3 field K̃ to deduce that they also hold over K.

The situation for statement (ii) is very different. Indeed, in this case, over perfect
fields, we do not have at our disposal any strengthening of Serre’s conjecture II that
can be applied to cohomological dimension 3 fields. For that reason, Berhuy, Frings
and Tignol’s proof cannot rely on a reduction to the characteristic zero case. In fact, it
requires to carry out a long, careful and delicate study of involutions of central simple
algebras over imperfect fields.

6. Transfer Principles and reduction to characteristic zero
fields

Our considerations at the end of the previous section motivate to investigate whether
one can prove in some way that Serre’s Conjecture II for positive characteristic fields is
implied by Serre’s Conjecture II for characteristic zero fields. This is the main objective
of a recent paper together with Lucchini Arteche ([ILA23]). The main tool to achieve
that is provided by what we call transfer principles that, given some field with some
fixed cohomological dimension, allow to construct other fields with the same or lower
cohomological dimension and having some additional properties.

Transfer Principle 1 (From uncountable to countable fields, Prop. 3.1 of [ILA23]). Let
K be a field with cohomological dimension δ and let K0 be a countable subfield. There
exists an intermediary field K0 ⊂ K∞ ⊂ K such that cd(K∞) ≤ δ.

Transfer Principle 2 (From positive to zero characteristic, Th. A of [ILA23]). Let K̃
be a complete discrete valuation field of characteristic 0 with countable residue field K
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of cohomological dimension δ. Then there exists a totally ramified extension K̃†/K̃ with
cohomological dimension δ.

Transfer Principle 3 (From higher to lower cohomological dimension, Th. B of
[ILA23]). Let δ ≥ 1 be an integer, ℓ a prime number and K a countable field of char-
acteristic 0 and with cohomological dimension δ. Assume that K is ℓ-special, that is
every finite extension of K has degree a power of ℓ. For each x ∈ K×, there exists an
algebraic extension Kx of K that has cohomological dimension ≤ (δ − 1) and such that
x ∈ NL/K(L×) for every finite subextension L of Kx/K.

The proof of Transfer Principle 1 is of a combinatorial nature. The idea is to start
with some cohomology class in degree> δ overK0 and find a countable extensionK1 ⊂ K
that kills it. Then take a cohomology class of degree > δ over K1 and find a countable
extension K1 ⊂ K that kills it. And so on. One then takes K∞ :=

⋃
i≥0Ki. For the

argument to work, we should kill in this way all cohomology classes of degree > δ over
the Ki’s. For that purpose, the difficulty comes from the fact that each time we pass
from some Ki to Ki+1, we add new cohomology classes that have to be killed. That
is why we need, for the argument to work, to carry out a slightly delicate diagonal-like
combinatorial argument.

This combinatorial argument is also needed in the more difficult Transfer Principles 2
and 3. For Transfer Principle 2, it needs to be combined with the following key statement:

Proposition 6.1 (Prop. 3.6 of [ILA23]). Let K̃ be a complete discrete valuation field
of characteristic 0 with infinite residue field K of characteristic p > 0. Let δ be the
cohomological dimension of K and let L̃/K̃ be a finite unramified Galois extension with
residue field extension L/K. Assume that K̃ contains a primitive p-th root of unity and
that it contains

√
−1 if p = 2. Then, for any element a ∈ Hδ+1(L̃,Z/pZ), there exists a

finite and totally ramified extension K̃ ′/K̃ of p-primary degree such that a is trivial when
restricted to K̃ ′L̃.

The proof of this proposition is very long and hard, and requires to use the Bloch-Kato
Conjecture as proved by Rost and Voevodsky ([Voe03]) as well as a delicate filtration of
the cohomology group Hδ+1(L̃,Z/pZ) constructed by Kato ([Kat82]). One big difficulty
consists in handling the length of this filtration, which increases when one replaces the
field L̃ by the ramified extension K̃ ′L̃. Subtle computations in K-theory and with Kähler
differentials are involved.

As for Transfer Principle 3, one needs to combine the combinatorial argument of
Transfer Principle 1 with the construction of the so-called norm varieties by Suslin and
Joukhovitsky in the context of the proof of the Bloch-Kato conjecture ([SJ06]).

Now, in order to reduce Serre’s Conjecture II to the case of characteristic zero fields,
the main tools are provided by Transfer Principles 1 and 2, as well as a particular case
of the Grothendieck-Serre Conjecture that has been proved by Nisnevich (and an extra
contribution by Guo) thanks to the Bruhat-Tits theory:

Conjecture 6.2 (Grothendieck-Serre Conjecture, [Ser58], [Gro58], [Gro68a]). Let B be
a regular local ring. Let G be a reductive group scheme over B and let Z be a G-torsor.
If the generic fiber of Z has a rational point, then Z has a B-point.

Theorem 6.3 ([Nis82], [Nis84], [Guo22]). The Grothendieck-Serre Conjecture holds over
complete discrete valuation rings.

17



6 Transfer Principles and reduction to characteristic zero fields

We are now ready to state and prove our main application of our Transfer Principles
to Serre’s Conjecture II:

Corollary 6.4 (Th. E of [ILA23]). If Serre’s conjecture II holds for countable fields of
characteristic 0, then it holds for arbitrary fields.

Remark 6.5. This statement still holds for groups of a given fixed type. In other words,
if Λ is some type in the classification of semisimple simply connected groups and if Serre’s
Conjecture II for groups of type Λ over countable fields of characteristic 0 holds, then it
holds for groups of type Λ over arbitrary fields. This provides a new proof of Berhuy,
Frings and Tignol’s result about groups of classical type over imperfect fields that avoids
the delicate study of involutions on central simple algebras over such fields.

Sketch of proof. Take G a semisimple simply connected group over a field K with co-
homological dimension ≤ 2 and let Z be a torsor under G. We want to prove that
Z(K) ̸= ∅.

• Step 1. By Transfer Principle 1, we can find a countable subfield K∞ of K with
cohomological dimension ≤ 2 and such that both G and Z are defined over K∞.
Up to replacing K by K∞, we may and do assume that K is countable.

• Step 2. By general commutative algebra, we can find a complete discrete valuation
ring B with fraction field K̃ of characteristic 0 and residue field K. By general
results contained in SGA using that G is semisimple simply connected, there exists
a semisimple simply connected B-group G that lifts G and a G-torsor Z that lifts
Z. We denote by G̃ and Z̃ their respective generic fibers.

• Step 3. By Transfer Principle 2, we can find a totally ramified extension K̃† of K̃
with cohomological dimension ≤ 2. By Transfer Principle 1, we can find a countable
subextension K̃†∞ of K̃† over which G̃ and Z̃ are both defined. By assumption
Z̃(K̃†∞) ̸= ∅. Hence Z̃(K̃†) ̸= ∅. But by the Grothendieck-Serre Conjecture for
complete discrete valuation rings, we deduce that Z(OK̃†

) ̸= ∅. Reducing modulo
the maximal ideal of OK̃†

, we deduce that Z(K) ̸= ∅.

The previous proof does not involve Transfer Principle 3. In fact, since Transfer
Principle 3 requires to work over ℓ-special fields, it is not well-suited to study rational
points but rather 0-cycles of degree 1. In fact, it allows to provide a higher version of
Serre’s Conjecture II for fields with cohomological dimension ≥ 3:

Theorem 6.6 (Th. D of [ILA23]). Assume Serre’s conjecture II holds for countable
fields of characteristic 0. Let K be a field with cohomological dimension ≤ (q + 2) and
let Z be a torsor under a semisimple simply connected group over K. Then:

Kq(K) = ⟨NL/K(Kq(L)) : L/K finite, Z(L) ̸= ∅⟩.

Here, Kq(K) stands for the q-th Milnor K-theory group:

K0(K) = Z,
Kq(K) := K× ⊗Z ...⊗Z K

×︸ ︷︷ ︸
q times

/ ⟨x1 ⊗ ...⊗ xq|∃i, j, i ̸= j, xi + xj = 1⟩ ,
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and NL/K : Kq(L) → Kq(K) is a norm map constructed by Kato (Section 1.7 of [Kat80]).
When q = 0, the norm map NL/K : K0(L) = Z → Kq(K) = Z is multiplication by the

degree of the extension L/K, and hence Theorem 6.6 is a weakening of Serre’s Conjecture
II stating that torsors under semisimple simply connected groups over cohomological
dimension 2 fields have points in finite extensions with coprime degree (we say that they
have zero-cycles of degree 1).

When q = 1, the norm map NL/K : K1(L) = L× → K1(K) = K× is the usual norm
in number theory, and hence Theorem 6.6 states that:

K× = ⟨NL/K(L×) : L/K finite, Z(L) ̸= ∅⟩

for every torsor Z under a semisimple simply connected group over a cohomological
dimension 3 field K.
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