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Let G be a semi-simple Lie group without compact factors, and consider a maximal
compact subgroup K in G. For example, we could take G = SLn(R) and K = SOn(R).
The homogeneous space X := G/K is then equipped with a Riemannian metric invariant
under G, whose curvature is negative or non-positive. This makes it a Riemannian
symmetric space, and studying the action of G on this space often yields deep results
about the structure of the group G (e.g., [Mau09], [Par09]).

Let us now move to a non-Archimedean setting. Let K be a field equipped with a
discrete valuation ω : K× → Z, and let G be a connected reductive K-group. Similarly to
the case of real Lie groups, it is natural to look for a metric space X with good geometric
properties and on which G(K) acts by isometries in a very transitive manner. Such a
space should play a role analogous to symmetric spaces in this non-Archimedian context.

A simple example is given by the case G = SL2. More precisely, let O be the valuation
ring in K, and consider the vector space V = K2. An O-lattice in V is an O-submodule of
the form Oe1 ⊕Oe2 for a certain K-basis (e1, e2) of V . Consider the set X0 of O-lattices
in V , up to homothety. The group G(K) acts naturally on this space. Moreover, X0 can
be equipped with a G(K)-invariant distance d. Indeed, given two elements x, x′ ∈ X0,
one can always find two O-lattices L and L′ representing them such that L′ ⊆ L and
L/L′ ∼= O/aO for some a ∈ K×. One then defines d(x, x′) := ω(a).

From a purely combinatorial perspective, X0 is a good candidate to replace symmetric
spaces in this context. However, topologically, it is not interesting as it has the discrete
topology. To address this issue, we introduce the non-oriented metric graph X, whose
vertex set is X0 and where two vertices are connected by an edge if they are at distance
1. It can then be shown that X is an infinite tree without leaves. Furthermore, the
action of G(K) on X0 naturally extends to X, and it is transitive on the set of edges.

To better understand the properties of this action, we now introduce the notion of
an apartment. Suppose K is complete, and define an apartment in X as a subspace that
is isometric to R. Apartments then cover the entire space X, and any two points in X
belong to a common apartment. Moreover, by identifying each apartment with R, the
restrictions of the actions of elements in G(K) to the apartments are affine transforma-
tions, and the group G(K) acts transitively not only on the set of edges but also on pairs
(e,A) where e is an edge and A is an apartment containing e. One says that the action
of G(K) on X is strongly transitive.

The space X introduced above is a particular case of what is called a Euclidean
building. To define this concept, consider a Euclidean space V of dimension d and a
finite subgroup W of its isometry group Isom(V ). A hyperplane in V is called a wall if it
is the set of points fixed by a reflection in W . A connected component of the complement
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in V of the union of all walls is called a Weyl (vectorial) chamber.
Consider now a Euclidean affine space A with underlying space V . The group Isom(A)

of affine isometries of A then identifies with the semi-direct product Isom(V ) ⋉ V . Let
W aff be a subgroup of Isom(A) whose vector part coincides with W , and such that
W aff = StabW aff (x) · T for some point x ∈ A and some subgroup T ⊂ V . A Weyl
(affine) chamber is any subset of A of the form x+ C, where x is a point in A and C
is a Weyl vectorial chamber.

Definition 0.1 (Parreau, [Parr00, Sec. II.1.2]). Let I be a set and A = {f : A → I} a
family of injective applications, whose images are called apartments. We say that I is a
Euclidean building of type (A,W aff) if the following axioms are true:

(I1) For all f ∈ A and all w ∈ W aff , f ◦ w ∈ A .

(I2) For all f, g ∈ A , the set D := g−1(f(A)) is convex in A, and there exists w ∈ W aff

such that (g−1 ◦ f)|D = w|D.

(I3) For any pair of points in I, there exists an apartment containing both.

These axioms allow to define a map dI : I × I → R≥0 as follows: if x and y are
two elements in I, we choose f ∈ A such that x and y are in f(A), then dI(x, y) :=
dA(f

−1(x), f−1(y)) (where dA denotes the Euclidean distance on A). This construction
does not depend on the choices made.

(I4) If C1 and C2 are two affine Weyl chambers of A, and f1 and f2 are two elements
of A , there exist Weyl subchambers C ′

1 ⊆ C1 and C ′
2 ⊆ C2 such that f1(C

′
1) and

f2(C
′
2) are contained in the same apartment.

(I5) For every apartment A and every x ∈ A, there exists a map ρA,x : I → A such that
ρA,x|A = idA, ρ−1

A,x({x}) = {x}, and dI(ρA,x(y), ρA,x(z)) ≤ dI(y, z) for all y, z ∈ I.

These axioms automatically impose that dI is a metric on I.

In two monumental articles of the 1970’s and 1980’s ([BT72], [BT84]), Bruhat and
Tits successfully associated to every reductive group G defined over a henselian Z-valued
field K a suitable Euclidean building I(G) endowed with an action of G(K) by isometries
with affine restrictions to apartments and with good transitivity properties. This theory
then yielded numerous arithmetic applications. Without aiming to be exhaustive, notable
examples include the study of arithmetic subgroups of reductive groups defined over
global fields and their properties of cohomological finiteness (e.g., [AB08, Chap. 13]), the
study of principal homogeneous spaces under linear groups over local rings (e.g., [Nis84],
[Guo20a], [Guo20b]), and the study of representations of p-adic groups via harmonic
analysis (e.g., [Sat63], [Mac71], [Bor76], [DeB04], [DeB05], [Sch96]).

The aim of this course is to present the article [HIL20] in collaboration with Hébert
and Loisel, in which we seek to generalize the Bruhat-Tits theory to the case of quasi-
split reductive groups defined over fields equipped with higher rank valuations. More
specifically, given a totally ordered abelian group Λ and a field K equipped with a Λ-
valuation ω : K× → Λ, can we associate to each K-reductive group G a "higher building"
I(K, ω,G) on which G(K) acts suitably?

This question has been studied in specific instances several times in the literature. For
example, in 1984, in the paper [MS84], Morgan and Shalen focused on the case G = SL2.
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1 The lattice building of the special linear group

They associated to this group a space that they called a Λ-tree, and they made SL2(K) act
on it. They then used this construction to study some compactifications of Teichmüller
spaces.

In 1994, in the papers [Par94] and [Par00], Parshin studied the case where Λ = Zn

(with the lexicographic order) and G = SLd or PGLd for arbitrary n and d. He associated
to these groups some spaces that are naturally equipped with an action of G(K) and that
share several properties with standard buildings.

Also in 1994, Bennett introduced in his thesis [Ben94] a vast generalization of the
concept of Λ-tree: Λ-buildings. In this abstract notion of higher building, apartments are
no longer modeled on the affine geometry of the space Rk for some k but rather on the
space Λk endowed with the topology induced by the order on Λ. Higher buildings turn
out to satisfy a number of axioms similar to axioms (I1)-(I5). As an example, Bennett
generalized the constructions of Morgan and Shalen and associated a Λ-building to the
group SLd for any Λ and d.

Since then, several authors have studied and/or used Bennett’s Λ-buildings. For
instance, without aiming to be exhaustive:

- Schwer and Struyve constructed new families of Λ-buildings using a base change
functor ([SS12]),

- Bennett and Schwer provided various different axiomatic frameworks for Λ-buildings
([BS14]),

- Kapranov used Parshin’s constructions to study certain Hecke algebras ([Kap01]),

- Kramer and Tent gave a new proof of the Margulis conjecture (which states that
any quasi-isometry of a symmetric space of the non-compact type and without rank
1 factors remains at bounded distance from an isometry) by associating Λ-buildings
to semi-simple Lie groups ([KT04], [KT09]).

The main Theorem of [HIL20] aims at generalizing the earlier constructions of Λ-
buildings associated to SLd and PGLd by Morgan and Shalen, Parshin, and Bennett.
Indeed, following an approach parallel to that of Bruhat and Tits’ theory, we show that
to every quasi-split reductive group G defined over a Henselian valued field (K, ω), one
can associate a higher building I(K, ω,G) in the sense of Bennett, and that one can
endow it with a natural action of the group G(K). We further prove that I(K, ω,G)
is automatically equipped with a fibered structure that helps to understand its geometry.

Let us start by the simplest possible example: the case of the special linear group
over a Z2-valued field.

1. The lattice building of the special linear group

Let K be a field equipped with a surjective valuation ω : K → Z2 ∪ {+∞}, where Z2 is
endowed with the lexicographic order. Let O be the ring of integers in K, that is the
subring of K given by elements with non-negative valuation. It is a local ring, whose
maximal ideal M is given by those elements in O that have positive valuation. The
residue field is the quotient κ := O/M.
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1 The lattice building of the special linear group

Example 1.1. Take K := k((u))((t)) for some base field k. One can endow this field with
the valuation ω : K× → Z2 defined by

ω

∑
n≥N

∑
m≥Mn

am,nu
mtn

 = (n0,m0)

where:

n0 = min{n : ∃m ≥ Mn, am,n ̸= 0},
m0 = min{m : am,n0 ̸= 0}.

In that way, we have ω(taub) = (a, b). The ring of integers O is then k[[u]] ⊕ tk((u))[[t]].
Its maximal ideal is:

M = uO = uk[[u]]⊕ tk((u))[[t]]

and the residue field is the field κ = k.

Given a positive integer ℓ, fix an (ℓ+1)-dimensional K-vector space V . An O-lattice
in V is an O-submodule of V of the form Ob0 ⊕ ...⊕Obℓ for some K-basis (b0, ..., bℓ) of
V . If L1 and L2 are two O-lattices in V , we say that they are homothetic if there exists
a ∈ K× such that L2 = aL1. In that case, we denote L1 ∼ L2. Let IL(SL(V ), ω) be
the set of O-lattices in V modulo the homothety relation. We say that IL(SL(V ), ω) is
the lattice Z2-building of (SL(V ), ω). The class of an O-lattice V in IL(SL(V ), ω) is
denoted [L].

Given two O-lattices L1 and L2 such that L2 ⊂ L1, we can always find a0, . . . , aℓ ∈ O
such that L1/L2 ≃ O/a0O ⊕ ... ⊕ O/aℓO. We write L2 ≤ L1 when at least one of the
ai’s is a unit in O. In other words, L2 ≤ L1 if, and only if, L2 ⊂ L1 and L1/L2 ≃
O/a1O⊕ ...⊕O/aℓO, for some a1, ..., aℓ ∈ O. In that case, the ℓ-tuple (ω(a1), ..., ω(aℓ))
is uniquely determined up to permutation, thus d(L1, L2) := max{ω(a1), ..., ω(aℓ)} ∈ Z2

is well-defined. Since a1, ..., aℓ are in O, we have d(L1, L2) ≥ 0.
Now, given x1, x2 ∈ IL(SL(V ), ω), one can easily check that there exist L1 ∈ x1 and

L2 ∈ x2 such that L2 ≤ L1. Then d(x1, x2) := d(L1, L2) ∈ Z2 does not depend on the
choices of L1 and L2, and the map d : IL(SL(V ), ω) → Λ is a Λ-valued distance on
IL(SL(V ), ω) in the following sense:

(D1) (Positivity) For all x, y ∈ IL(SL(V ), ω), we have d(x, y) ≥ 0;

(D2) (Separation) For all x, y ∈ IL(SL(V ), ω), d(x, y) = 0 if and only if x = y;

(D3) (Symmetry) For all x, y ∈ IL(SL(V ), ω), we have d(x, y) = d(y, x);

(D4) (Triangle inequality) For all x, y, z ∈ IL(SL(V ), ω), we have d(x, z) ≤ d(x, y) +
d(y, z).

1.1 The projection πL

Let ω1 : K → Z ∪ {∞} be the composite of the valuation ω followed by the projection
Z2 → Z on the first coordinate. It is a Z-valuation on K. We may then define:

• the associated ring of integers O, that is those elements in K whose ω1-valuation
is non-negative;
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1 The lattice building of the special linear group

• the maximal ideal M of O, which consists of those elements in O whose ω1-valuation
is positive;

• the residue field K1 := O/M of O;

• the ring O1 := O/M and its maximal ideal M1 := M/M.

The ring O1 is then a valuation ring in K1 with valuation group:

K×
1 /O

×
1
∼= Z

and with residue field:
O1/M1

∼= O/M ∼= κ.

Example 1.2. We continue example 1.1. Then ω1 is the t-adic valuation on K and we
have:

O = k((u))[[t]], M = tk((u))[[t]], K1 = k((u)),

O1 = k[[u]], M1 = uk[[u]], O1/M1 = k.

Now recall that IL(SL(V ), ω) (resp. IL(SL(V ), ω1)) stands for the set of O-lattices
of V (resp. the set of O-lattices of V ) up to homothety, and consider the map πL :
IL(SL(V ), ω) → IL(SL(V ), ω1) defined by π([L]) = [O.L].

Theorem 1.3.

(i) The map πL is surjective and SL(V )-equivariant.

(ii) For any O-lattice L of V , the stabilizer of the fiber (πL)−1([L]) is SL(L). Moreover,
the action of SL(L) on (πL)−1([L]) factors through SL(L/ML).

(iii) Let ω0 be the valuation of K1. For any O-lattice L of V , there is an SL(L/ML)-
equivariant bijection ResL between (πL)−1([L]) and the lattice Z-building IL(SL(L/ML), ω0)
of (SL(L/ML), ω0).

Figures 1 and 2 represent the projection πL for SL2 and SL3.

Figure 1: The building of SL(V ) when V is a 2-dimensional vector space over a field K
endowed with a valuation ω : K× → Z2.
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1 The lattice building of the special linear group

Figure 2: The building of SL(V ) when V is a 3-dimensional vector space over a field K
endowed with a valuation ω : K× → Z2.

As in the classical setting, one can endow the space IL(SL(V ), ω) with an apartment
system in the following. We call a lattice apartment in IL(SL(V ), ω) a set of the form
{Oe0 ⊕Oxλ1e1 ⊕ · · · ⊕Oxλℓ

eℓ] |λ1, . . . , λℓ ∈ Zn} for some basis (e0, e1, . . . , eℓ) of V and
some family (xλ)λ∈Zn in K such that ω(xλ) = λ for each λ. Of course, IL(SL(V ), ω)
is covered by its apartments and the action of SL(V ) on IL(SL(V ), ω) preserves the
apartment system.

In order to get a better understanding of this apartment system, let us carefully study
the case of SL2.

1.2 The apartment system for SL2

From now on, we assume that ℓ = 1. We are then interested in the apartment system of
the lattice Z2-tree of SL2

∼= SL(V ) over K.
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1 The lattice building of the special linear group

For that purpose, we are going to glue the different fibers of πL. For P ∈ IL(SL(V ), ω1),
the fiber (πL)−1(P ) will be called the infinitesimal subtree of IL(SL(V ), ω) above P
and will be denoted TP .

Let ∂1IL(SL(V ), ω) be the set of O-submodules of V of the form Ob1 ⊕Ob2, where
(b1, b2) is a K-basis of V , quotiented by the homothety relation.

Definition 1.4. Fix two elements t and u in K with respective valuations (1, 0) and
(0, 1).

(i) Let P ∈ IL(SL(V ), ω1). A ray of TP is a sequence of the form ([Ob1⊕Ounb2])n∈Z≥0
∈

T
Z≥0

P , for some basis (b1, b2) of V . We say that two rays (Pn)n∈Z≥0
and (Qn)n∈Z≥0

satisfy (Pn) ∼ (Qn) if there exists k ∈ Z such that Pn+k = Qn for all n ≫ 0. A
class of rays for this relation is called an end of TP . We denote by E(TP ) the set
of ends of TP and we set E(IL(SL(V ), ω)) =

⋃
P∈IL(SL(V ),ω) E(TP ).

(ii) Let ϵ ∈ {−,+} and set η(−) = 1 and η(+) = 0. Let P be an element in
∂1IL(SL(V ), ω) and take E ∈ E(IL(SL(V ), ω)). We say that E converges to
P ϵ if there exists a K-basis (b1, b2) of V such that the ray ([Ob1 ⊕Ou−ϵnb2]) rep-
resents E and P = [Ob1 ⊕ Otη(ϵ)b2]. This definition is inspired by the fact that⋂

n∈Z≥0
unO = tO and

⋃
n∈Z≥0

u−nO = O.

Remark 1.5. One has:

[Oe1 ⊕Oume2] →
m→+∞

[Oe1 ⊕Ote2]
−,

[Oe1 ⊕Oume2] = [Ou−me1 ⊕Oe2] →
m→+∞

[Oe1 ⊕Oe2]
+.

The following proposition shows that limits are uniquely defined:

Proposition 1.6. Let ϵ ∈ {+,−} and let E be an element in E(IL(SL(V ), ω). Then
there exists a unique element P ∈ ∂1IL(SL(V ), ω) such that E → P ϵ.

This allows to introduce two maps:

lim+ : E(IL(SL(V ), ω)) → ∂1IL(SL(V ), ω),

lim− : E(IL(SL(V ), ω)) → ∂1IL(SL(V ), ω),

that send each E ∈ E(IL(SL(V ), ω) to the unique element P ∈ ∂1IL(SL(V ), ω) such
that E → P+ and E → P− respectively. One can then prove the following theorem:

Theorem 1.7. Let P ∈ IL(SL(V ), ω1) and set:

S(P, 1) := {Q ∈ IL(SL(V ), ω1)| d(P,Q) = 1}.

Consider the map:

πL
1 : ∂1IL(SL(V ), ω) → IL(SL(V ), ω1)

[L] 7→ [OL].

Then:

1. the map lim+ : E(TP ) → (πL
1 )

−1(P ) is a bijection,
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1 The lattice building of the special linear group

2. the map πL ◦ lim− : E(TP ) → S(P, 1) is a bijection,

3. for all E ∈ E(TP ), there exists a unique Ẽ ∈ E(IL(SL(V ), ω)) such that lim−E =
lim+ Ẽ. Moreover, lim+E = lim− Ẽ and Ẽ ∈ E(TπL(lim− E)).

One can then decide to glue each end E ∈ E(IL(SL(V ), ω)) with the unique end
Ẽ ∈ E(IL(SL(V ), ω)) such that lim−E = lim+ Ẽ.

Remark 1.8. A good way to understand this glueing involves the notion of border at
infinity introduced by Tzu-Jan Li in his lectures. Take P and Q two adjacent vertices
in IL(SL(V ), ω1). The infinitesimal tress TP and TQ are both isomorphic to the lattice
building of SL2 over the field K1 and hence their borders at infinity ∂∞TP and ∂∞TQ are
both isomorphic to P1(K1). Moreover, the sets of neighbours S(P, 1) and S(Q, 1) are also
both isomorphic to P1(K1). We therefore glue TP and TQ by gluing the point in ∂∞TP

corresponding to Q ∈ S(P, 1) with the point in ∂∞TQ corresponding to P ∈ S(Q, 1).

Once the previous glueing is done, apartments are maximal paths in IL(SL(V ), ω),
as illustrated in figure 3.

Figure 3: Three apartments in the Z2-building of SL2 over a Z2-valued field.

8



1 The lattice building of the special linear group

By construction, any apartment of IL(SL(V ),K) is isomorphic to Z2. If we fix a basis
(e1, e2) of V and we denote by A the apartment associated to this basis, the stabilizer of
A in SL(V ) is the group N of elements of SL(V ) whose matrices in the basis (e1, e2) are
of the form: (

⋆ 0
0 ⋆

)
or

(
0 ⋆
⋆ 0

)
.

The group N acts on A through the quotient N/Tb where Tb is the group of elements of
SL(V ) whose matrices in the basis (e1, e2) are of the form:(

a 0
0 a−1

)
with a ∈ O×. The quotient W̃ := N/Tb is called the extended affine affine Weyl
group and it is spanned by the elements:

w0 =

(
0 1
−1 0

)
, w1 =

(
0 u

−u−1 0

)
, w2 =

(
0 t

−t−1 0

)
.

One can then check that the set {0, 1}2 is a fundamental domain for the action of W̃ on
A.

Figure 4: The action of the extended affine Weyl group on the standard apartment of the
lattice building of SL(V ) when V is a 2-dimensional vector space over a field K endowed
with a valuation ω : K× → Z2.
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3 Abstract Definition of Rn-Buildings

2. The totally ordered ring Rn

In the classical case studied by Bruhat and Tits, where one works with reductive groups
over a Z-valued field, the apartments of associated buildings are real affine spaces. The
choice of the real field as the base field stems from the fact that the valuation group Z
can be viewed as an ordered subgroup of R.

In this whole section, we will focus on the case of reductive groups defined over a
Zn-valued field for some n. It seems then natural to replace R with the totally ordered
group Rn, which indeed contains Zn. However, Rn is not a field, and hence one cannot
directly model apartments using Rn-affine spaces at first glance.

One possible idea is to equip Rn with a ring structure that is compatible with its struc-
ture as an ordered abelian group. This is easily achieved by identifying Rn with the ring
Rn := R[[ϵ]]/(ϵn), endowed with the lexicographic order in the R-basis (1, ϵ, ϵ2, ..., ϵn−1).
Therefore, in the following, we will often work with this ring. Hence, it is appropriate to
introduce a number of conventions, notations, and associated definitions:

General Notations and Conventions. Throughout, let n be a fixed integer, and
denote by Rn the ring R[[ϵ]]/(ϵn), equipped with the lexicographic order in the R-basis
(1, ϵ, ϵ2, ..., ϵn−1). For each λ ∈ Rn, we denote:

R>λ
n := {µ ∈ Rn |µ > λ}, R≥λ

n := {µ ∈ Rn |µ ≥ λ}.

Affine Geometry over Rn. A principal homogeneous principal space A under a finitely
generated Rn-module V is called an Rn-affine space. For a, b ∈ A and v ∈ V , we
generally write a+ v instead of v · a, and denote b− a as the unique element w ∈ V such
that b = a+w. If A and A′ are two Rn-affine spaces with underlying Rn-modules V and
V ′, a map f : A → A′ is called affine if it has the form:

f : a 7→ o′ +
−→
f (a− o)

for some o ∈ A, o′ ∈ A′, and
−→
f ∈ HomRn−mod(V, V

′). We denote AffRn(A) the group of
affine automorphisms of A.

Rn-Distances. Given any set I, a map d : I × I → Rn is called an Rn-distance if:

(D1) (Positivity) For all x, y ∈ I, we have d(x, y) ≥ 0;

(D2) (Separation) For all x, y ∈ I, d(x, y) = 0 if and only if x = y;

(D3) (Symmetry) For all x, y ∈ I, we have d(x, y) = d(y, x);

(D4) (Triangle inequality) For all x, y, z ∈ I, we have d(x, z) ≤ d(x, y) + d(y, z).

3. Abstract Definition of Rn-Buildings

Let us start by defining the notion of an Rn-building in the sense of Bennett. To do this,
we begin by describing the geometry and combinatorics of the corresponding apartments.
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3 Abstract Definition of Rn-Buildings

a) Affine Apartments over Rn

Let VR be a finite-dimensional R-vector space and Φ ⊂ (VR)
∗ := Hom(VR,R) a root

system (if you are not familiar with this notion, see [Bou81, Déf. 6.1.1]). We assume Φ
spans (VR)

∗ as an R-vector space, and we denote by Φ∨ ⊂ VR the dual root system of
Φ. There exists a bijection ∨ : Φ → Φ∨ such that α(α∨) = 2 for all α ∈ Φ. Each α ∈ Φ
induces two reflections rα ∈ GL(V ∗

R ) and sα ∈ GL(VR) such that rα(β) = β−β(α∨)α and
sα(β

∨) = β∨−α(β∨)α∨ for all β ∈ Φ. The subgroup of GL(V ∗
R ) generated by the rα and

the subgroup of GL(VR) generated by the sα are canonically isomorphic. Henceforth, we
denote them both as W and call them the vectorial Weyl group. This is a Coxeter
group.

Now consider the Rn-module VRn := VR ⊗ Rn. Let ARn be an Rn-affine space with
underlying Rn-module VRn , and fix a point o in ARn . Each pair (α, λ) ∈ Φ×Rn induces
an affine map θα,λ : ARn → Rn such that θα,λ(x) = α(x − o) + λ for all x ∈ ARn .
This allows us to introduce the "affine hyperplane" Hα,λ := θ−1

α,λ({0}), the "open affine
half-space" D̊α,λ := θ−1

α,λ(R
>0
n ), and the "closed affine half-space" Dα,λ := θ−1

α,λ(R
≥0
n ).

Definition 3.1. An affine apartment over Rn is given by a tuple
ARn =

(
ARn , VR,Φ, (Γα)α∈Φ, Ŵ

)
such that:

1. VR is a finite-dimensional R-vector space;

2. Φ is a root system in (VR)
∗;

3. ARn is an Rn-affine space with underlying Rn-module VRn, equipped with the topol-
ogy generated by the D̊α,λ;

4. (Γα)α∈Φ is a family of unbounded subsets of Rn containing 0, satisfying the following
property:

Let H = {Hα,λ | α ∈ Φ, λ ∈ Γα}. For H = Hα,λ ∈ H , let rH be the
affine reflection in ARn fixing H and whose underlying linear part is
given by rα. Then each rH stabilizes H .

5. Ŵ is a subgroup of W ⋉ VRn containing the rH for H ∈ H and stabilizing H .

The group Ŵ is called the extended affine Weyl group. Given α ∈ Φ and λ ∈ Γα,
a set of the form Dα,λ (resp. D̊α,λ, resp. Hα,λ) is called a half-apartment (resp. an
open half-apartment, resp. a wall) of ARn . A subset of ARn is said to be enclosed
if it is a finite intersection of closed half-apartments. A Weyl chamber in ARn is a set
C of the form: ⋂

α∈∆
Dα,λα

where ∆ is a basis of the root system Φ and the λα are elements in Rn. A face of C is
a subset of the form: ⋂

α∈∆′

Hα,λα ∩
⋂

α∈∆\∆′

Dα,λα

for some ∆′ ⊂ ∆. The vertex of C is its unique face of dimension 0. It is the only point
contained in the intersection

⋂
α∈∆Hα,λα .
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3 Abstract Definition of Rn-Buildings

In the sequel, it will be important to endow affine apartments over Rn with an Rn-
distance. For that purpose, we fix some subset of positive roots Φ+ of Φ and we set:

∥x∥Rn =
∑
α∈Φ+

|α(x)| ∈ Rn

for x ∈ VRn . Here, the absolute value of an element λ ∈ Rn is defined as:

|λ| =

{
−λ if λ ∈ Rn

λ otherwise.

In this way, we get a W -invariant map ∥ · ∥Rn : VRn → R≥0
n that does not depend on

the choice of Φ+ and that satisfies:

∥v + w∥Rn ≤ ∥v∥Rn + ∥w∥Rn ,

∥λv∥Rn = ∥v∥Rn |λ|,

for any v, w ∈ VRn and any λ ∈ Rn. Therefore the map dstdRn
: ARn × ARn → R≥0

n given
by dstdRn

(x, y) = ∥y − x∥Rn defines an Rn-distance on ARn that is Ŵ -invariant.
For x ∈ ARn and ε ∈ R>0

n , we denote by BRn(x, ε) the set {y ∈ ARn | d(x, y) < ε}.
The topology of AR described in Definition 3.1 thanks to the sets D̊α,λ coincides with
the topology that has the BRn(x, ε) as a base.

b) Bennett’s higher buildings

We are now able to define the notion of an Rn-building. For that purpose, we consider
an affine apartment ARn = (ARn , VR,Φ, (Γα)α∈Φ, Ŵ ) over Rn. We say that a set A
is an apartment of type ARn if it is equipped with a non-empty set Isom(ARn , A)

of bijections f : ARn → A such that Isom(ARn , A) = {f0 ◦ w | w ∈ Ŵ} for every
f0 ∈ Isom(ARn , A). An isomorphism between two apartments A and A′ is a bijection
ϕ : A → A′ for which there exists f0 ∈ Isom(ARn , A) such that ϕ ◦ f0 ∈ Isom(ARn , A

′).
Given an apartment A of type ARn , we can choose an element f ∈ Isom(ARn , A).

This allows us to transfer the structures of Rn-affine space and topological space from
ARn to A, and to define half-apartments, walls, enclosures, and Weyl chambers in A.
These geometric and combinatorial structures of A do not depend on the choice of f .

Definition 3.2 (Bennett [Ben94]). Let ARn be an affine apartment and d be an Rn-
distance on ARn invariant under the action of the extended affine Weyl group Ŵ . An
Rn-building is a set I equipped with a covering A by subsets called apartments such that:

(A1) Each A ∈ A is equipped with an apartment structure of type ARn.

(A2) If A,A′ are two apartments, then A∩A′ is an enclosed subset of A and there exists
an isomorphism ϕ : A → A′ fixing A ∩A′.

(A3) For any pair of points in I, there exists an apartment containing both of them.

12



3 Abstract Definition of Rn-Buildings

Axioms (A1)–(A3) then define a map dI : I × I → Rn as follows: if x, y are two el-
ements in I, choose an apartment A ∈ A containing x and y, and an isomorphism
f ∈ Isom(ARn , A), then define dI(x, y) := d(f−1(x), f−1(y)). This construction is inde-
pendent of the choices made. With the definitions from Section 2, the map dI automati-
cally satisfies the axioms of an Rn-distance except for the triangle inequality.

(A4) If C1 and C2 are two Weyl chambers in I, there exist two Weyl sub-chambers
C ′
1 ⊆ C1 and C ′

2 ⊆ C2 that are contained in a common apartment.

(A5) For any apartment A and any x ∈ A, there exists a map ρA,x : I → A such that
ρA,x|A = idA, ρ−1

A,x({x}) = {x}, and dI(ρA,x(y), ρA,x(z)) ≤ dI(y, z) for all y and z
in I.

(A6) Let A1, A2, A3 be three apartments such that A1 ∩ A2, A2 ∩ A3, and A3 ∩ A1 are
half-apartments. Then A1 ∩A2 ∩A3 is non-empty.

Axiom (A5) automatically imposes that dI satisfies the triangle inequality, hence dI is
an Rn-distance.

Remark 3.3. In the case n = 1, axioms (A1)-(A5) coincide with axioms (I1)-(I5) of Def-
inition 0.1. Moreover, they imply axiom (A6) (cf. [Parr00, Sec. II.1.4]), so R-buildings
in the sense of Bennett are the usual Euclidean buildings.

c) Other useful axiomatizations of higher buildings

In the article [BS14], Bennett and Schwer introduce several other axiomatizations of
higher buildings. One of them will be particularly useful in the sequel.

Let I be a set satisfying axioms (A1), (A2), and (A3), and consider the following
additional axioms:

(TI) (Triangle Inequality) The map dI constructed thanks to Axioms (A1)–(A3) satisfies
the triangle inequality.

(EC) (Exchange Condition) Given two apartments A and B intersecting in a half-apartment
M with boundary wall H, the set (A \B) ∪ (B \A) ∪H is also an apartment.

(SC) (Sundial Configuration) Given an apartment A and a Weyl chamber C such that
P := A ∩ C is a codimension 1 face of C, if H is the wall of A containing P , then
there exist two distinct apartments A1 and A2 containing C ∪ H and such that
A1 ∩A and A2 ∩A are both half-apartments in A.

(LA) (Large Atlas) If C and C ′ are two Weyl chambers with respective vertices x and
x′, then there exist a neighborhood Ωx of x in C and a neighborhood Ωx′ of x′ in
C ′ that are contained in the same apartment.

(GG) (Locally a Large Atlas) If C and C ′ are two Weyl chambers with the same vertex x,
then there exist neighborhoods Ωx and Ω′

x of x in C and C ′ respectively, contained
in the same apartment.

13



3 Abstract Definition of Rn-Buildings

(CO) (Opposite Chambers) Let w0 be the longest element of the vectorial Weyl group W
(cf. [Dav07, Sec. 4.6]). Given two Weyl chambers C and C ′ with the same vertex
x, we say they are opposite if there exist neighborhoods Ωx and Ω′

x of x in C and
C ′ respectively, contained in an apartment A, such that Ω′

x − x = w0 · (Ωx − x). If
C and C ′ are such chambers, there exists a unique apartment containing both.

(sFC) (Strong Finite Cover) For any pair of points x and y, any apartment A containing
x and y and any Weyl chamber C with vertex z, the segment:

[x, y] := {ζ : dI(x, ζ) + dI(ζ, y)}

is contained in a finite union of Weyl chambers based at z such that each of these
Weyl chambers is contained in a common apartment with some open neighborhood
of z in C.

(BI) (Building at Infinity) Say that two Weyl chambers are parallel if they share a Weyl
sub-chamber. The set ∂I of parallel classes of Weyl chambers in I is a spherical
building with apartments the boundaries ∂A of apartments A in I.

Bennett and Schwer then prove the following result:

Theorem 3.4 (Bennet-Schwer [BS14, Th. 3.3]). Let ARn be an affine apartment and d
be an Rn-distance on ARn invariant under the action of the extended affine Weyl group
Ŵ . Let I be a set equipped with a covering A by apartments satisfying axioms (A1),
(A2) and (A3). The following assertions are equivalent:

(i) I is an Rn-building, that is it satisfies axioms (A4), (A5) and (A6).

(ii) I satisfies axioms (A4), (A5) and (EC).

(iii) I satisfies axioms (A4), (A5) and (SC).

(iv) I satisfies axioms (A4), (TI) and (A6).

(v) I satisfies axioms (A4), (TI) and (SC).

(vi) I satisfies axioms (A4), (TI) and (EC).

(vii) I satisfies axioms (TI), (GG) and (CO).

(viii) I satisfies axioms (GG) and (CO).

(ix) I satisfies axioms (LA) and (CO).

(x) I satisfies axioms (A4), (sFC) and (A6).

(xi) I satisfies axioms (A4), (sFC) and (EC).

(xii) I satisfies axioms (A4), (sFC) and (SC).

(xiii) I satisfies axioms (A4), (BI) and (A6).

(xiv) I satisfies axioms (A4), (BI) and (EC).

(xv) I satisfies axioms (A4), (BI) and (SC).

The axiomatization of higher buildings given by statement (viii) will be used subse-
quently.
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4 The space I(K, ω,G)

4. The space I(K, ω,G)

Let K be a field equipped with a surjective valuation ω : K× → Zn, and let G be a
quasi-split K-reductive group. Denote by S a maximal split torus in G, and let T and
N be the centralizer and the normalizer of S in G, respectively. Let Φ = Φ(G,S) be
the root system associated with (S,G). Note that, since we consider the root system
associated to (G,S) and not the one associated to (G,T), it might happen that Φ is not
reduced: more precisely, it might happen that, for some α ∈ Φ, the intersection Zα ∩ Φ
is not {±α} but instead {±α,±2α}.

In this section, we briefly outline how one can associate to the triplet (K, ω,G) a
space I(K, ω,G) on which the group G(K) acts naturally. The method is analogous to
that used by Bruhat and Tits to construct the building of G in the case n = 1.

Step 1: Definition of a model apartment with an action of the normalizer
N. Let X∗(S) (resp. X∗(S)) denote the cocharacter module of S (resp. the character
module of S), and consider the R-vector spaces V1 := X∗(S)⊗ R and V ∗

1 := X∗(S)⊗ R.
The natural pairing X∗(S) ⊗ X∗(S) → Z induces a pairing of R-vector spaces ⟨·, ·⟩ :
V1 ⊗ V ∗

1 → R, allowing us to identify V1 with HomR(V
∗
1 ,R). Moreover, the module

X∗
K(T) of characters of T that are defined over K is a finite index subgroup of X∗(S)

(exercise!). Hence V ∗
1
∼= X∗

K(T)⊗ R, and:

V1
∼= HomR(X

∗
K(T)⊗ R,R).

By change of basis, we obtain:

V1 ⊗Rn
∼= HomR(X

∗
K(T)⊗ R, Rn).

We can therefore define a morphism:

ρ : T(K) → V1 ⊗Rn

t 7→ ρ(t)

where:

ρ(t) : X∗
K(T)⊗ R → Rn

χ⊗ λ 7→ −λω(χ(t)).

Introduce now the R-vector space:

VR := V1/Φ
⊥

where
Φ⊥ := {v ∈ X∗(S)⊗ R | ∀α ∈ Φ, α(v) = 0}.

Set VRn := VR ⊗ Rn and consider an Rn-affine space ARn with underlying Rn-module
VRn . The morphism ρ then induces an action of T(K) on VRn by translations, and
the Weyl group W associated to the root system Φ acts on VRn by base change. By
identifying ARn and VRn via the choice of a suitable origin o ∈ ARn , we obtain actions
of T(K) and W = N(K)/T(K) on ARn . These can actually be combined to obtain a
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unique action of N(K) on ARn by Rn-affine transformations. In other words, there exists
a group morphism ν : N(K) → AffRn(ARn) making the diagram commute:

1 // T(K)

ρ0

��

// N(K)

ν

��

//W

j

��

// 1

1 // VRn
// AffRn(ARn) // GLRn(VRn) // 1,

where ρ0 is the composition of ρ : T(K) → V1⊗Rn followed by the projection V1⊗Rn →
VRn and j is the natural inclusion W ⊂ GL(VR) ⊂ GLRn(VRn).

Sketch of proof. Let W ′ be the push-out of the morphism ρ0 : T(K) → VRn and the
inclusion T(K) ⊆ N(K). The group W ′ is then an extension of W by V :

1 → VRn → W ′ → W → 1. (1)

The group W is finite, while the group VRn is a Q-vector space. A general argument in
abstract group theory then shows that exact sequence (1) splits, so that W ′ = VRn ⋊W .
Hence j induces a morphism:

j′ : W ′ = V ⋊W → V ⋊GL(VRn) = AffRn(VRn).

By composing the natural map N(K) → W ′ and j′, we get the desired morphism:

ν : N(K) → AffRn(VRn).

The extended affine Weyl group Ŵ is defined as the image of ν.

Step 2: Definition of parahoric subgroups. For any root α ∈ Φ, there exists a
unique K-subgroup of G, denoted by Uα, which is closed, connected, unipotent, normal-
ized by T and whose Lie algebra is gα+g2α. It is called the root group of G with respect
to α. We let π : Gα → ⟨Uα,U−α⟩ be the universal cover of ⟨Uα,U−α⟩.

When α/2, 2α ̸∈ Φ, one can find a finite extension Lα of K and an isomorphism
ξα : RLα/K(SL2,Lα) → Gα. But the root groups of SL2,Lα associated to the maximal
torus given by diagonal matrices can be parametrized as follows:

y− : Ga,Lα → SL2,Lα

v 7→
(

1 0
−v 1

) y+ : Ga,Lα → SL2,Lα

u 7→
(
1 u
0 1

)
One can then get isomorphims:

x±α := π ◦ ξα ◦RLα/K(y±) : RLα/K(Ga) → U±α.

By composing x−1
α with the (unique) extension ωLα : Lα → Rn∪{∞} of ω to Lα, we can

define a "valuation":

φα : Uα(K) → Rn

xα(u) 7→ ωLα(u).
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We define the value group Γα := φα(Uα(K) \ {1}).

When 2α ∈ Φ, one can find a tower of finite extensions Lα/L′
α/K with [Lα : L′

α] = 2
such that, if τ stands for the non-trivial element in Gal(Lα/L′

α) and h is the hermitian
form on L3

α given by:

h : (x−1, x0, x1) 7→
1∑

i=−1

xi
τx−i,

then there is an isomorphism ξα : RL′
α/K(SU(h)) → Gα. But the root groups of SU(h)

associated to the maximal torus given by diagonal matrices can be parametrized as
follows:

y− : Hα → SU(h)

(u, v) 7→

 1 0 0
u 1 0
−v −τu 1


y+ : Hα → SU(h)

(u, v) 7→

1 −τu −v
0 1 u
0 0 1


where Hα is the L′

α-subvariety of RLα/L′
α
(A2

Lα
) defined by:

uτu = v + τv

together with the group law:

(u, v), (u′, v′) 7→ (u+ u′, v + v′ + τuu′).

One can then get isomorphims:

x±α := π ◦ ξα ◦RLα/K(y±) : RL′
α/K(Hα) → U±α.

By composing x−1
α with the (unique) extension ωLα : Lα → Rn∪{∞} of ω to Lα, we can

define "valuations":

φα : Uα(K) → Rn φ2α : Uα(K) → Rn

xα(u, v) 7→
1

2
ωLα(v), xα(0, v) 7→ ωLα(v).

We define the value groups:

Γα := φα(Uα(K) \ {1}),

Γ′
α :=

{
φα(x) : x ∈ Uα(K) \ {1} and ∀y ∈ U2α(K), φα(xy) ≤ φα(x)

}
,

Γ2α := φ2α(U2α(K) \ {1}).

The valuations φα we have just constructed induce filtrations of the root groups
Uα(K). Indeed, for each α ∈ Φ and each λ ∈ Rn, we introduce the group:

Uα,λ := {1} ∪ φ−1
α (R≥λ

n ) ⊆ Uα(K).

This allows to define the so-called parahoric subgroups. More precisely, for each x ∈ ARn ,
we introduce the groups:

Nx := StabN(K)(x),

Ux := ⟨Uα,−α(x−o) |α ∈ Φ⟩,
Px := UxNx,
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5 Statement of the Main Theorem

where o is the origin we have chosen in ARn .

Step 3: Definition of I(K, ω,G). We now have all the necessary tools to define
I(K, ω,G):

Definition 4.1. The space I(K, ω,G) is defined as the quotient of G(K) × ARn by the
following equivalence relation:

(g, x) ∼ (h, y) ⇔ ∃n ∈ N(K),

{
y = ν(n)(x),

g−1hn ∈ Px.

The group G(K) acts on I(K, ω,G) by:

g · (h, x) := (gh, x),

where g, h ∈ G(K) and x ∈ ARn.

An apartment in I(K, ω,G) will then be a subset of the form {g} × ARn for some
g ∈ G(K).

5. Statement of the Main Theorem

We are finally ready to state the Main Theorem from [HIL20].

Theorem 5.1 (Hébert-I.-Loisel, [HIL20, Th. 3.26]). Let us consider:

an integer n ≥ 1,

a henselian field K equipped with a surjective valuation ω : K → Zn ∪ {∞},

a quasi-split K-reductive (connected) group G,

and introduce the notations of Section 4.1:

S a maximal split torus of G,

Φ the root system associated with (G,S),

X∗(S) the module of cocharacters of S,

VR the quotient of X∗(S)⊗Z R by the orthogonal of Φ,

ARn an Rn-affine space with underlying Rn-module VR ⊗Rn,

(Γα)α∈Φ the value groups,

Ŵ the extended affine Weyl group,

the space I(K, ω,G).

Endow ARn with an Rn-distance d that is invariant under the action of the affine Weyl
group Ŵ .
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(i) The set I(K, ω,G) is an Rn-building whose apartments are of type:

ARn = (ARn , VR,Φ, (Γα)α∈Φ, Ŵ ).

(ii) Let dI(K,ω,G) denote the distance on I(K, ω,G) provided by axioms (A1), (A2) and
(A3). The group G(K) acts on I(K, ω,G) by isometries, and the restriction of this
action to apartments is given by Rn-affine transformations. The induced action on
the set of apartments is transitive.

(iii) Fix s ∈ {1, . . . , n}, introduce the natural projection π
(0)
≤s : Rn → Rs and consider

the valuation ω≤s = π
(0)
≤s ◦ ω. The projection π

(0)
≤s induces a surjective map:

π≤s : I(K, ω,G) → I(K, ω≤s,G),

compatible with the action of the group G(K). If Γα,≤s and Γ′
α,≤s for α ∈ Φ stand

for the value groups associated to the construction of the building I(K, ω≤s,G),
then for each point X = [g, x] ∈ I(K, ω≤s,G), the fiber π−1

≤s(X) is a product:

IX ×
(
⟨Φx⟩⊥ ⊗R Rn−s

)
,

where

Φx =

{
{α ∈ Φ | − α(x) ∈ Γα,≤s} if 2α ̸∈ Φ

{α ∈ Φ | − α(x) ∈ Γ′
α,≤s} otherwise,

⟨Φx⟩⊥ is the orthogonal of Φx in VR, and IX is an Rn−s-building whose apartments
are Rn−s-affine spaces with underlying Rn−s-module

(
VR/⟨Φx⟩⊥

)
⊗R Rn−s.

Remark 5.2. This theorem can be extended to the case where K is equipped with a
valuation taking values in any totally ordered abelian group Λ. To do this, one must
introduce the rank rk(Λ) of Λ, which is the totally ordered set of archimedean equiva-
lence classes of Λ, and replace the ring Rn with the sub-R-vector space Rrk(Λ) of Rrk(Λ)

consisting of families (xs)s∈rk(Λ) with well-ordered1 support. By endowing this group
with the lexicographic order, the so-called Hahn Embedding Theorem then ensures that
Λ embeds as an ordered subgroup into Rrk(Λ). However, unlike Rn, the space Rrk(Λ)

generally lacks a natural ring structure, so the notions of affine geometry from Section 2
must be redefined in this more general context.

The example of SL2. In order to illustrate the previous Theorem, we come back to the
example of SL(V ) for V a 2-dimensional vector space over a Z2-valued field K. We keep
all the notations of Section 1.2. According to Theorem 5.1, there exists a fibration

π := π≤1 : I(K, ω, SL(V )) → I(K, ω1, SL(V ))

satisfying the following properties:

(i) I(K, ω1, SL(V )) is the classical Bruhat-Tits building for SL(V ) over (K, ω1); in
particular, its vertices correspond to O-lattices in V modulo homothety;

1A totally ordered set is said to be well-ordered if every non-empty subset has a smallest element.
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5 Statement of the Main Theorem

(ii) for each point X lying inside an edge of I(K, ω1,SL(V )), the fiber π−1(X) is iso-
morphic to the real line R;

(iii) for each vertex X of I(K, ω1,SL(V )) corresponding to a O-lattice L in V , the fiber
π−1(X) is isomorphic to the Bruhat-Tits building of SL(L/ML) over (K1, ω0),
and its stabilizer in SL(V ) is SL(L); the latter acts on the fiber via the quotient
SL(L) → SL(L/ML);

(iv) the apartments of I(K, ω,SL(V )) are the inverse images of apartments in I(K, ω1, SL(V )).

The following figures illustrate these phenomena:

Figure 5: The building of SL(V ) when V is a 2-dimensional vector space over a field K
with a valuation ω : K× → Z2.

Figure 6: Three apartments A1 (in red), A2 (in green), and A3 (in violet) of the building
of SL(V ) when V is a 2-dimensional vector space over a field K with a valuation ω :
K× → Z2.
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6 General outline of the proof of Theorem 5.1

Relation to the Lattice Building. One can construct an isometric injection SL(V )-
invariant i : IL(SL(V ), ω) → I(K, ω, SL(V )) that identifies IL(K,SL(V ), ω) with the
vertices of I(K, ω, SL(V )) and induces a bijection:

i∗ : {Apartments of I(K, ω, SL(V ))} →
{
Apartments of IL(SL(V ), ω)

}
A 7→ i−1(A).

Furthermore, we have a commutative diagram:

IL(SL(V ), ω)
i //

��
πL

��

I(K, ω,SL(V ))

π

��
IL(SL(V ), ω1)

i1 // I(K, ω1,SL(V )).

Action on an apartment. Let A be an apartment in I(K, ω, SL(V )). Identifying A
with R2 = R[[ϵ]]/(ϵ2), one can verify that the set

{a+ bϵ | 0 ≤ a, b ≤ 1} ∪ {a+ bϵ | 1 < a < 2, 0 < b ≤ 1} ⊂ R2

is a fundamental domain for the action of the extended affine Weyl group W̃ .

Figure 7: Action of W̃ on an apartment.

6. General outline of the proof of Theorem 5.1

The proof of Theorem 5.1 is long and technical. This is partly due to the fact that
the building IX appearing in part (iii) is generally not associated with a K-reductive
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group. For this reason, we introduce a general and abstract formalism of valued Rn-root
data that generalizes the valued root data introduced by Bruhat and Tits in [BT72,
Sec. 6.1 & 6.2]. The proof then consists in showing, on the one hand, that to each valued
Rn-root data we can associate an Rn-building - which we do by proving axioms (A1),
(A2), (A3), (GG) and (CO) as authorized by Theorem 3.4 - and on the other hand, that
the spaces I(K, ω,G) and IX appearing in Theorem 5.1 are precisely buildings associ-
ated to certain valued Rn-root data.

More precisely, here is a more detailed step-by-step proof outline.

Step A. Given an abstract group G and a root system Φ, we define a notion of Rn-
valued root data for G of type Φ by a system of axioms that are listed in the Ap-
pendix. This provides subgroups T,N and (Uα)α∈Φ within G, as well as "valuations"
(φα : Uα → Rn ∪ {∞})α∈Φ playing roles analogous to the groups T(K), N(K) and (Uα(K))α∈Φ
and to the valuations (φα)α∈Φ associated with a quasi-split reductive group G in Section
4.

Step B. Given an Rn-valued root data, we define a notion of compatible action ν of N
on an Rn-affine space A by a system of axioms that are listed in the Appendix. This
action plays the role of the action of N(K) on ARn associated to a quasi-split reductive
group G in Section 4.

Step C. We study the properties of groups associated to an Rn-valued root datum
endowed with a compatible action on an Rn-affine space A. More precisely, following
similar constructions to the ones described in Section 4, we introduce for each x ∈ A
some subgroups Nx, Ux and Px = UxNx of G, and we prove an Iwasawa decomposition
and a Bruhat decomposition in this context. This latter result generalizes the classical
Bruhat decomposition for Z-valued fields and a Theorem of Kapranov for split reductive
groups over Z2-valued fields ([Kap01, Prop. (1.2.3)]). The following theorem presents
what the Bruhat decomposition says about the groups associated to a reductive group
G in Section 4.

Theorem 6.1 (Bruhat decomposition, [HIL20, Th. 5.37]). We take all the notations of
Section 4. Let C,C ′ be two Weyl chambers of ARn with respective vertices x, x′ ∈ ARn.
Let Ωx and Ωx′ two open neighbourhoods of x and x′ in C and C ′ respectively, and set:

PΩx :=
⋂

y∈Ωx

Py, PΩx′ :=
⋂

y′∈Ωx′

Py′ .

If Ωx and Ωx′ are sufficiently small, then

G(K) = PΩxN(K)PΩx′

and there is a natural one-to-one correspondence

Ŵ → PΩx\G(K)/PΩx′ .

Step D. Given an Rn-valued root datum D of a group G with a compatible action on
an Rn-affine space A, we construct the quotient I(D) := (G× A)/ ∼ with:

(g, x) ∼ (h, y) ⇔ ∃n ∈ N,

{
y = ν(n)(x),

g−1hn ∈ Ux.
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6 General outline of the proof of Theorem 5.1

This quotient plays the role here of the space I(K, ω,G) associated with a quasi-split
reductive group G in Section 4. It satisfies axiom (A1) by definition and is endowed with
an action of G whose restrictions to apartments are affine transformations. By definition,
the induced action on the set of apartments is transitive. One can also easily check that,
for each x ∈ A, the stabilizer of x in G is Px. Indeed,

[1, x] = g · [1, x] ⇐⇒ ∃n ∈ N,

{
x = ν(n−1)(x)

gn−1 ∈ Ux

⇐⇒ ∃n ∈ Nx, g ∈ Uxn

since Nx is, by definition, the stabilizer of x in N . Thus, the stabilizer of x in G is UxNx,
which is Px.

Step E. We use the results from Step C to show that I(D) satisfies axioms (A2), (A3),
(A4), and (GG). For instance:

Proposition 6.2. We take all the notations of Section 4. Then I(K, ω,G) satisfies
axiom (LA). In particular, it satisfies axioms (A3) and (GG).

Proof. Let C and C ′ be two Weyl chambers with respective vertices x and x′. Since
G(K) acts transitively on the set of apartments, we may assume that C ⊂ ARn . Let
g ∈ G(K) be such that g−1.C ′ ⊂ ARn . By the Bruhat decomposition 6.1, we can find Ωx

and Ωx′ two sufficiently small open neighbourhoods of x and x′ in C and C ′ respectively
and write g = bnb′ with b ∈ PΩx , b′ ∈ Pg−1Ωx′

and n ∈ N . Then bΩx = Ωx ⊂ bARn and

Ωx′ = gg−1Ωx′ = bnb′g−1Ωx′ = bng−1Ωx′ ⊂ b.ARn .

Step F. We consider a quasi-split reductive group G over a henselian Zn-valued field K,
and follow the constructions explained in Section 4 to associate to it an Rn-valued root
data D with a compatible action on an Rn-affine space ARn . This allows us to identify
the space I(K, ω,G) with I(D).

Step G. We construct the fibration π≤s from part (iii). To do so, observe that all the
work that was done in the previous steps for the quasi-split reductive group G over the
valued field (K, ω) can be done over the valued field (K, ω≤s). In particular, the root
group datum associated to G can be endowed with two valuations and two compatible
actions:

• an Rn-valuation (φα)α∈Φ induced by ω and a compatible action ν of N(K) on an
Rn-affine space ARn ;

• an Rs-valuation (φ≤s,α)α∈Φ induced by ω≤s and a compatible action ν≤s of N(K)
on an Rs-affine space ARs .

The first valuation gives rise to the Rn-valued root group datum D introduced in Step
F, and the second to an Rs-valued root group datum that we denote by D≤s.

Now recall that there is a real vector space VR such that ARn is an Rn-affine space
with underlying Rn-module V ⊗ Rn and ARs is an Rs-affine space with underlying Rs-
module V ⊗ Rs. Hence, if we fix two origins on ∈ ARn and os ∈ ARs , the projection
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6 General outline of the proof of Theorem 5.1

π
(0)
≤s : Rn → Rs induces a projection map:

πA,≤s : ARn → ARs

x = on + v 7→ πA,≤s(x) = os + (idV ⊗ π
(0)
≤s)(v).

This projection map itself naturally induces a surjective map:

π≤s : I(D) → I(D≤s)

which is compatible with the G(K)-action.
The main result we prove concerning this projection map can be stated as follows:

Theorem 6.3 ([HIL20, Th. 8.15]). For each point X = [g, x] ∈ I(K, ω≤s,G), the fiber
π−1
≤s(X) is a product:

I(DX)×
(
⟨Φx⟩⊥ ⊗R Rn−s

)
,

for some Rn−s-valued root group datum DX endowed with a compatible action on an
Rn−s-affine space with underlying Rn−s-module

(
VR/⟨Φx⟩⊥

)
⊗R Rn−s.

Thanks to Steps D and E, we know that I(DX) satisfies axioms (A1), (A2), (A3), (A4),
and (GG) with n replaced by n− s.

Step H. We prove axiom (CO) both for I(K, ω,G) = I(D) and for the IX = I(DX)
appearing in the fibers of π≤s. Projections of Step G play a crucial role in this Step in
order to reduce to the case n = 1. More precisely, let us set I := I(D) = I(K, ω,G).
We proceed in four substeps to prove that I satisfies axiom (CO):

(i) Given a set satisfying axioms (A1)-(A4) and (GG) with n = 1, we provide sufficient
conditions for it to also satisfy axiom (CO) and hence to be an R-building.

(ii) Take any s0 ∈ {1, . . . , n}. According to Step G, we have three projection maps:

π≤s0 : I(K, ω,G) → I(K, ω≤s0 ,G),

π≤s0
≤s0−1 : I(K, ω≤s0 ,G) → I(K, ω≤s0−1,G),

π≤s0−1 = π≤s0
≤s0−1 ◦ π≤s0 : I(K, ω,G) → I(K, ω≤s0−1,G).

Hence, for each X ∈ I(K, ω≤s0−1,G), the map π≤s0 : I(K, ω,G) → I(K, ω≤s0 ,G)
induces a surjection:

π=s0,X : π−1
≤s0−1(X) →

(
π≤s0
≤s0−1

)−1
(X).

By using Step G again, we know that the set
(
π≤s0
≤s0−1

)−1
(X) satisfies axioms (A1)-

(A4) and (GG) with n = 1. By using Substep (i), we prove that it also satisfies
axiom (CO) and hence it is an R-building.

(iii) We prove that, whenever C and C ′ are two opposite Weyl chambers with common
vertex x as in axiom (CO), if we set X := π≤s0−1(x), then the images of C and
C ′ by π=s0,X are opposite Weyl chambers with common vertex π=s0,X(x) in the

R-building
(
π≤s0
≤s0−1

)−1
(X).
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(iv) By contradiction, we consider two opposite Weyl chambers C and C ′ with common
vertex x as in axiom (CO) and we assume that they are not contained in a common
apartment. By setting X := π≤s0−1(x) as before, we prove that there exists an
integer s0 ∈ {1, . . . , n} such that their images by π=s0,X are not contained in a

common apartment in the R-building
(
π≤s0
≤s0−1

)−1
(X). Together with Substep

(iii), this contradicts the fact that this R-building satisfies axiom (CO).

7. Appendix: some axiomatic definitions

Axioms defining a Root Group Datum. Let G be a group and Φ be a root system.
A root group datum of G of type Φ is a system (T, (Uα,Mα)α∈Φ) satisfying the following
axioms:

(RGD1) T is a subgroup of G and, for any root α ∈ Φ, the set Uα is a nontrivial subgroup
of G, called the root group of G associated to α;

(RGD2) for any roots α, β ∈ Φ such that β ̸∈ R<0α, the commutator subgroup [Uα, Uβ] is
contained in the subgroup generated by the root groups Uγ for γ ∈ (α, β);

(RGD3) if α is a multipliable root, we have U2α ⊂ Uα and U2α ̸= Uα;

(RGD4) for any root α ∈ Φ, the set Mα is a right coset of T in G and we have U−α \ {1} ⊂
UαMαUα;

(RGD5) for any roots α, β ∈ Φ and any m ∈ Mα, we have mUβm
−1 = Urα(β);

(RGD6) for any choice of positive roots Φ+ on Φ, we have TU+ ∩ U− = {1} where U+ (resp.
U−) denotes the subgroup generated by the Uα for α ∈ Φ+ (resp. α ∈ Φ− = −Φ+).

We denote N the subgroup of G generated by the Mα for α ∈ Φ if Φ ̸= ∅ and by N = T
otherwise. One can prove that axiom (RGD5) defines an epimorphism vν : N → W (Φ)
such that vν(m) = rα for any m ∈ Mα, any α ∈ Φ.

Axioms defining a Valued Root Group Datum. Let Φ be a root system and
(T, (Uα,Mα)α∈Φ) be a root group datum. An Rn-valuation of the root group datum is a
family (φα)α∈Φ of maps φα : Uα → Rn ∪ {∞} satisfying the following axioms:

(V0) for any α ∈ Φ, the set φα(Uα) contains at least 3 elements;

(V1) for any α ∈ Φ and λ ∈ Rn ∪ {∞}, the set Uα,λ = φ−1
α ([λ,∞]) is a subgroup of Uα

and Uα,∞ = {1};

(V2) for any α ∈ Φ and m ∈ Mα, the map U−α \ {1} → Rn defined by u 7→ φ−α(u) −
φα(mum−1) is constant;

(V3) for any α, β ∈ Φ such that β ̸∈ R⩽0α and any λ, µ ∈ Rn, the commutator group
[Uα,λ, Uβ,µ] is contained in the group generated by the Urα+sβ,rλ+sµ for r, s ∈ Z>0

such that rα+ sβ ∈ Φ;

(V4) for any multipliable root α ∈ Φ, the map φ2α is the restriction of the map 2φα to
U2α;
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(V5) for any α ∈ Φ and u ∈ Uα, for any u′, u′′ ∈ U−α such that u′uu′′ ∈ Mα, we have
φ−α(u

′) = −φα(u).

Axioms defining an Action Compatible with a Valuation. Let Φ be a root system
and (T, (Uα,Mα)α∈Φ) be a root group datum together with an Rn-valuation (φα)α∈Φ.
Let A be an Rn-affine space endowed with an origin o and let ν : N → AffRn(A) be an
action of N on A by Rn-affine endomorphisms. We say that the action of N on A is
compatible with the valuation (φα)α∈Φ if:

(CA1) the linear part of this action is equal to vν : N → W (Φ);

(CA2) for any α ∈ Φ and any u ∈ Uα \ {1}, we have 2φα(u) + α
(
ν
(
m(u)

)
(o)− o

)
= 0.

(CA3) for any α ∈ Φ and m ∈ Mα, the element ν(m) has order 2.

Here, m(u) stands for the unique element in M−α such that u ∈ Uαm(u)Uα. The
existence and uniqueness of such an element is ensured by the root group datum axioms.
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