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Chapter 1

Introduction and Convention

This is a note on Prasad's paper [Pra20] at TIMS.

1.1 Galois cohomology of number �elds

Throughout this section, let K be a number �eld and let ΩK be the set of places of K.
Let G be an a�ne algebraic group over K. The Galois cohomology set H1(K,G) classi�es
G-torsors over K and controls certain local-global problems in arithmetic geometry. Thus it
is an interesting question to study the pointed set H1(K,G).

One way to study H1(K,G) is to consider the following global-to-local map

∆ : H1(K,G) →
∏

v∈ΩK

H1(Kv, G). (1.1)

In the sequel, we brie�y introduce several well-known results concerning the sets H1(K,G),
Ker∆ and Coker∆. As a consequence, we will see that these sets indeed tell us something
about the arithmetic of G over K.

1.1.1 The set H1(K,G)

Conjecture 1.1.1 (Serre's conjecture II). Let G be a semi-simple simply connected group

over a �eld F of cd(F ) ≤ 2 (see De�nition 3.1.4 below). Then H1(F,G) = 1.

In general, Serre's conjecture II is still open. The following theorem provides a �rst
special case of Serre's conjecture II.

Theorem 1.1.2. Suppose that K is totally imaginary. Let G be a semi-simple simply con-

nected group over K. If G is quasi-split, Then H1(K,G) = 1.

Note that cd(K) = 2 since K is totally imaginary. By quasi-split we mean that G
contains a Borel subgroup de�ned over K. As of today, we can remove the assumption on
quasi-splitness.
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To understand how H1(K,G) is controlled, we begin with the local Galois cohomology
sets. The following theorem provides a local version of Theorem 1.1.2 where we do drop the
quasi-splitness assumption (which is quite strong).

Theorem 1.1.3. Let G be a semi-simple simply connected group over K. For any �nite

place v, we have H1(Kv, G) = 1.

In most literatures, the proof of this theorem is a Lie-theoretic case-by-case argument.
During its original proof, people also obtained the following interesting result. We assume
that G is absolutely almost-simple simply connected, so we can use the classi�cation theory.

Theorem 1.1.4. Let G be an absolutely almost-simple simply connected group over Kv for

some �nite place v. If G is Kv-anisotropic, then G = SLn(D) for some �nite dimensional

central division Kv-algebra D. In other words, G is of type 1A (i.e., inner type A).

In this mini-course, we will give a proof of Theorem 1.1.4 and give a uniform proof of
Theorem 1.1.3 using Bruhat�Tits building theory.

Let us go back to the investigation of the pointed setH1(K,G). In view of Theorem 1.1.3,
we see that the global-to-local map (1.1) reduces to

∆ : H1(K,G) →
∏

v real

H1(Kv, G). (1.2)

Theorem 1.1.5. If G is a semi-simple simply connected group, then the global-to-local map

∆ in (1.2) is bijective.

Thus for an arbitrary number �eld K, the computation of H1(K,G) is completely con-
trolled by the real cohomology H1(R, G). See [Bor88] for the computation of Galois coho-
mology of real reductive groups. Finally, if K is totally imaginary, then H1(K,G) = 1 is
trivial by Theorem 1.1.5 without assuming G being quasi-split.

1.1.2 The kernel of the diagonal map

Since H1(K,G) classi�es G-torsors over K, Ker∆ classi�es everywhere locally trivial G-
torsors. We have seen Ker∆ = 1 when G is a semi-simple simply group by Theorem 1.1.5.
In general, we only ask whether Ker∆ is �nite.

Theorem 1.1.6 (Borel�Serre). Let G be an a�ne algebraic group over K. Then Ker∆ is

�nite.

If G is a connected reductive group over K, then Ker∆ has a canonical abelian group
structure. For example, see [San81, Théorème 8.5] and [Bor98, Theorem 5.13].

If we generalize the global-to-local map (1.1) to semi-global function �elds (for example,
Qp(t)), then the �niteness of Ker∆ is still open.
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1.1.3 The cokernel of the diagonal map

It is not obvious that Coker∆ is interesting from its de�nition. However, Kottwitz proved
that Coker∆ can be described by the algebraic fundamental group πalg

1 (GK) of G. This
sequence together with some Poitou�Tate style arithmetic dualities is useful in comparing
cohomological obstructions. See [Har02] for more details.

Theorem 1.1.7 (Kottwitz, [Bor98, Theorem 5.16]). Let G be a connected reductive group

over K. There is an exact sequence of pointed sets

H1(K,G) →
∏

v∈ΩK

H1(Kv, G) → (πalg
1 ((GK)Gal(K|K))tors.

1.2 Arithmetic setting of �elds

From now on, we �x the following conventions.

(1) An arbitrary �eld will be systematically denoted by K.

(2) Let k be a �eld endowed with a discrete valuation v.

(3) Let k be a �xed algebraic closure of k.

(4) Let O be the valuation ring of v and let κ be the residue �eld. We assume throughout
that O is Henselian.

(5) Let knr be the maximal unrami�ed extension of k contained in k. Let Onr be the
valuation ring of knr and let κsep be the residue �eld of Onr.

(6) Recall that κsep is the separable closure of κ. Let Γ = Gal(κsep|κ) = Gal(knr|k) be the
absolute Galois group of κ.

Example 1.2.1. Let k = Qp be a p-adic �eld and let v = vp be any p-adic valuation. Then
O = Zp is the ring of p-adic integers with residue �eld κ = Fp. Moreover, knr is obtained

by adjoining all roots of unity of order prime to p and Gal(knr|k) = Gal(Fp|Fp) = Ẑ is the
absolute Galois group of Fp. So our settings indeed generalize the classical local �eld settings.

1.3 Statement of main theorems

Let k be a discrete valuation �eld with perfect residue �eld κ of cd(κ) ≤ 1. (For example,
Qp is such a �eld.) We shall give a proof of the following theorem generalizing Theorem 1.1.4
and Theorem 1.1.3 via the Bruhat�Tits building theory.

Theorem. Let G be a semi-simple simply connected group over k.

(1) If G is absolutely almost-simple and k-anisotropic, then G is of type A.
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(2) Any G-torsor over k is trivial, i.e., H1(k,G) = 1.

The �rst assertion is weaker than Theorem 1.1.4. However, if k is a local non-Archimedean
�eld, then G is of inner typeA provided that G is absolutely almost-simple and k-anisotropic.
This was proved by Kneser in char 0 and by Bruhat�Tits in general. For this purpose, it will
be su�cient to show that such groups G of outer type An are isotropic for n ≥ 2. Roughly
speaking, the group G = SU(h) is isotropic if and only if h represents zero. However, any
Hermitian form in n + 1 ≥ 3 variables over a non-Archimedean local �eld automatically
represents zero. Thus G is isotropic.

1.4 Geometric and group-theoretic settings

We keep the following notations and conventions from now on.

(1) A K-variety is a septated K-scheme of �nite type.

(2) For any k-variety X, we shall simply write Xnr := X ×k knr.

(3) Varieties de�ned over knr will be systematically denoted by X̃.

(4) For any k-torus T and any algebraic �eld extension K|k, let

X∗(K,T ) := HomK(TK ,Gm) and X∗(K,T ) := HomK(Gm, TK).

We keep the following conventions about algebraic groups.

(1) Let G an arbitrary connected smooth a�ne algebraic k-group.

(2) The centre of G is denoted by Z(G).

(3) Let DG be the derived subgroup of G.

(4) Let G be a connected reductive group over k.

(5) Let Gss := DG be the derived subgroup of G, which is a semi-simple group.

(6) Let Gsc → Gss be the universal covering of Gss, which is a simply connected group.

(7) Let CG(T ) (resp. NG(T )) be the centralizer (resp. normalizer) of a torus T in G.

Recall that Z(G) is an a�ne algebraic group of multiplicative type and that Z(Gss) is a
�nite algebraic group (of multiplicative type).

Apartments, chambers and facets in B(Gss/knr) will be written as A, C and F , respec-
tively. Those in B := B(Gss/knr)

Γ will be written as A, C and F, respectively.
Finally, we recall de�nitions on quasi-split algebraic groups.
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De�nition 1.4.1. A Borel subgroup of G is a connected smooth solvable (a�ne) subgroup
B such that G/B is complete. The group G is quasi-split if it contains a Borel subgroup
de�ned over K.

Example 1.4.2. The group GLn is quasi-split because all upper triangular matrices form
a Borel subgroup.

1.5 Pseudo-reductive groups

Let G be a connected smooth a�ne algebraic group over a �eld K.

De�nition 1.5.1. The K-unipotent radical radu(G) of G is the largest connected smooth
unipotent normal K-subgroup of G. The group G is pseudo-reductive if radu(G) = 1.

Recall that G is reductive if radu(GK) = 1. But the formation of radu(G) commutes with
separable �eld extension, so pseudo-reductive groups are reductive if K is perfect.

De�nition 1.5.2.

(1) Let X be a K-variety and let φ : Gm → X be a morphism of K-varieties. If φ can be
extended to a morphism φ̃ : A1 → X, then we say that lim

t→0
φ(t) exists.

(2) Let G be an a�ne algebraic group and take any λ ∈ X∗(K,G). We de�ne a functor

PG(λ) : AlgK → Gp, R 7→ {g ∈ G(R) | lim
t→0

λ(t)gλ(t)−1 exists}.

(3) Let G be a connected smooth a�ne algebraic group over K. We say that G is pseudo-
parabolic if G = PG(λ) rad

u(G).

Remark 1.5.3.

(1) A smooth a�ne algebraic subgroup P of G is parabolic if G/P is a complete variety.
Similarly to pseudo-reductive groups, pseudo-parabolic subgroups are parabolic if the
base �eld K is perfect.

(2) The group G contains a proper parabolic subgroup if and only if it is isotropic ([Mil17,
Proposition 25.2]). Moreover, every parabolic subgroup of a connected reductive group
G is of the form PG(λ) for some λ ∈ X∗(K,G) by [Mil17, Theorem 25.1].

(3) If G is quasi-split, then Borel subgroups are (minimal) parabolic subgroups.

(4) We give an example of a parabolic subgroup of GL4 as follows

P =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗


 .
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Chapter 2

Bruhat�Tits Theory

Let k be a discrete valuation �eld as in Section 1.2. In this chapter, we assume system-
atically that the Bruhat�Tits theory is available for any connected reductive group over knr.
More precisely, there is an a�ne building B(Gss/knr), called the Bruhat�Tits building
of G(knr) (also of Gss(knr), see Hypothesis 2.1.3 below), such that

(1) the group G(knr) acts on B(Gss/knr) by polysimplicial automorphisms, and

(2) given a non-empty bounded subset Ω of an apartment of B(Gss/knr), there is a smooth
a�ne Onr-group scheme G ◦

Ω with generic �bre Gnr and connected special �bre.

Thanks to [BT84, �4], these assumptions are ful�lled if G is quasi-split over knr. For
instance, when the residue �eld κ is perfect and cd(κ) ≤ 1, then G is quasi-split over knr by
Steinberg's theorem (Theorem 3.1.7).

In this chapter, the purpose is to establish a Bruhat�Tits theory over k from that over
knr (i.e., Bruhat�Tits theory descends from the maximal unrami�ed extension to the base).
In the �rst section, we make some assumptions1 and deduce some straightforward conse-
quences. Subsequently, we derive a Bruhat�Tits theory over k.

2.1 Preliminaries

Recall that we have assumed that Bruhat�Tits theory is available for G over knr.

2.1.1 The enlarged Bruhat�Tits building

Let Z ⊂ Z(G) be the maximal k-torus splitting over knr. Consider the natural Γ-action
on X∗(knr,Z). Note that

X∗(knr,Z)
Γ = Homk(Gm,Z) = X∗(k,Z).

1These assumptions are indeed valid over local �elds. See [BT72,BT84] for more information.
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We put
V (Znr) := X∗(knr,Z)⊗ZR.

The Γ-action on X∗(knr,Z) extends to an R-linear action on V (Znr), and

V (Znr)
Γ = X∗(k,Z)⊗ZR.

De�nition 2.1.1. Let B(G/knr) := V (Znr) × B(Gss/knr). We de�ne it as the enlarged
Bruhat�Tits building of G(knr).

Remark 2.1.2. If G is semi-simple, then Z(G) is a �nite group of multiplicative type over
k. In particular, the torus Z is trivial and V (Znr) = 0. On the other hand, G = Gss since it
is semi-simple. Hence there is no ambiguity on the notation B(G/knr) = B(Gss/knr).

Hypothesis 2.1.3. If G → H is a homomorphism of connected reductive K-groups with
central kernel, then there is an isomorphism B(G/K) → B(H/K) of a�ne buildings.

Therefore the a�ne building B(Gss/knr) of G can be identi�ed with that of

� the adjoint group Gad via 1 → Z(G) → G → Gad → 1,

� its derived subgroup Gss via Gad = G/Z(G) = Gss/Z(Gss) = (Gss)ad, and

� the simply connected covering Gsc of Gss via the central isogeny Gsc → Gss.

2.1.2 Description of building axioms

Axioms on group actions

By assumption, there is a G(knr)-action on the a�ne building B(Gss/knr). The behavior
of the G(knr)-action can be described via the following hypothesis.

Hypothesis 2.1.4.

(1) We assume that there is a G(knr)-equivariant bijective correspondence

{apartments of B(Gss/knr)} ↔ {maximal knr-split torus of Gnr}. (2.1)

(2) Let T̃ be a maximal knr-split torus of Gnr with corresponding apartment A. Under the

above correspondence, A is an a�ne space under V (T̃ ) := X∗(knr, T̃ )⊗ZR.

(3) Consider the set Θ of ordered pairs (A,C), where A is an apartment of B(Gss/knr) and
C is a chamber in A. The group Gss(knr) acts transitively on Θ.

Construction 2.1.5. We de�ne a G(knr)-action on the set of apartments of B(Gss/knr). Let

T̃ be a maximal knr-split torus of Gnr (over knr) and let A be the apartment of B(Gss/knr)

corresponding to T̃ .

� For any g ∈ G(knr), we de�ne g ·A to be the apartment corresponding to gT̃ g−1. Thus

g · A = A ⇐⇒ g ∈ NGnr(T̃ )(knr).

� In particular, NGnr(T̃ )(knr) ∩Gss(knr) acts transitively on the set of chambers in A.
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Axioms on Bruhat�Tits group schemes

We describe some basic properties of theOnr-group scheme G ◦
Ω. For simplicity, in this sub-

subsection we assume throughout that G is semi-simple. We keep the notation B(Gss/knr)
to emphasize that these properties are still valid if G is a connected reductive group.2

Hypothesis 2.1.6. Let Ω be a non-empty bounded subset of B(Gss/knr).

(1) There is a smooth a�ne Onr-group scheme GΩ such that

GΩ(Onr) = {g ∈ G(knr) | g · x = x for all x ∈ Ω}. (2.2)

(2) Let G ◦
Ω be the neutral component of GΩ. Thus it is the union of the connected generic

�bre Gnr and the neutral component of the special �bre of GΩ. We assume that G ◦
Ω is

an a�ne open Onr-subgroup scheme of GΩ.

We may change the bounded subset Ω of B(Gss/knr), we make the following hypothesis.

Hypothesis 2.1.7. Let Ω be a non-empty bounded subset of B(Gss/knr).

(1) Let Ω be the closure of Ω in B(Gss/knr). Then G ◦
Ω
= G ◦

Ω.

(2) Let F be a facet of B(Gss/knr) containing Ω. Then G ◦
Ω = G ◦

F .

(3) If G is semi-simple simply connected and quasi-split over knr, then G ◦
Ω = GΩ.

(4) Under the same condition as (3), we assume

StabG(knr)(Ω) = G ◦
Ω(Onr).

Concerning closed subtorus of the smooth a�ne group scheme G ◦
Ω, we make the following

assumption.

Hypothesis 2.1.8. Let A be an apartment of B(Gss/knr) with corresponding maximal knr-

split torus T̃ of Gnr. We assume that there is a closed Onr-split torus T in G ◦
Ω with generic

�bre T̃ such that the special �bre Tκsep of T is a maximal κsep-split torus of G ◦
Ω,κsep

. This
can be visualized by the diagram

Gnr T̃ //

��

maximal

knr-split
oo T

��

Tκsep
oo

��

maximal

knr-split
// G ◦

Ω,κsep

Spec knr // SpecOnr Specκsep.oo

De�nition 2.1.9 (A partial order). Let Ω,Ω0 ⊂ B(Gss/knr) be non-empty bounded subsets.
We put

Ω0 ≺ Ω if and only if Ω0 ⊂ Ω.

In particular, we may talk about maximal facets (chambers) and minimal facets (vertices).

2See [Pra20, pp. 222, last paragraph] for the construction of GΩ for general connected reductive groups.
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If we are given two facets F0 ≺ F , we would like to compare G ◦
F0

and G ◦
F . To this end,

we begin with two non-empty bounded subsets Ω0 ≺ Ω. The RHS of (2.2) tells us that
there is an inclusion GΩ(Onr) ⊂ GΩ0(Onr). We assume that there is an Onr-group scheme
homomorphism

ρΩ0,Ω : GΩ → GΩ0

which is the identity on the generic �bre Gnr. We thus obtain anOnr-group scheme homomor-
phism ρΩ0,Ω : G ◦

Ω → G ◦
Ω0

and a κsep-group scheme homomorphism ρΩ0,Ω : G ◦
Ω,κsep

→ G ◦
Ω0,κsep

on special �bres.

Hypothesis 2.1.10. Let F0 ≺ F be two facets of B(Gss/knr).

(1) We denoted by p(F0|F ) := Im ρF0,F which is a subgroup of G ◦
F0,κsep

. We assume that
p(F0|F ) is pseudo-parabolic.

(2) Thus we obtain an order-preserving map

{F |F0 ≺ F} → {pseudo-parabolic κsep-subgroup of G ◦
F0,κsep

}, F 7→ p(F0|F ),

where the latter set is partially-ordered by opposite of inclusion. We assume that
this map is bijective.

(3) Consider the canonical projection

πF0 : G ◦
F0
(Onr) → G ◦

F0,κsep
(κsep).

We assume that the inverse image of the subgroup p(F0|F )(κsep) under πF0 is G ◦
F (Onr).

Applying Hypothesis 2.1.10(3) to a facet F yields the following corollary.

Corollary 2.1.11. Let F be a facet of B(Gss/knr). Then chambers containing F are in

one-to-one correspondence with minimal pseudo-parabolic κsep-subgroups of G ◦
F .

2.1.3 Bounded subsets

Bounded subgroups are useful when we study special k-apartments. Before going further,
we take a quick review on bounded subgroups.

De�nition 2.1.12. A subset Θ ⊂ G(k) is bounded, if the following set is bounded below

{v(f(x)) | for any f ∈ k[G], x ∈ Θ}.

Since G is an a�ne algebraic group, it can be realized as a closed subvariety of some a�ne
space An. Then Θ ⊂ G(k) is bounded if and only if its image in An(k) = kn is bounded.

The k-rank ofG is the dimension of a maximal k-split torus inG. The connected reductive
group G is anisotropic if the k-rank of G equals zero. Otherwise, we say that G is isotropic.

Theorem 2.1.13. The G is k-anisotropic if and only if group G(k) is bounded.
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Proof. See [Pra20, Theorem 1.1].

If k is a non-discrete locally compact �eld (for instance, Qp), then G(k) is compact with
respect to the analytic topology induced by k if and only if G is k-anisotropic.

Proposition 2.1.14. Suppose that Gss is k-anisotropic. Then G(k) contains a unique max-

imal bounded subgroup G(k)bdd. More precisely, it is given by

G(k)bdd := {g ∈ G(k) |χ(g) ∈ O× for all χ ∈ X∗(k,G)}.

Proof. See [Pra20, Proposition 1.3].

Example 2.1.15. Let S be a maximal k-split torus of G and let CG(S) be the centralizer
of S in G. Then D(CG(S)) is k-anisotropic since S is a maximal k-split torus of G. In
particular, CG(S)(k) contains a unique maximal bounded subgroup. More precisely, we have

CG(S)(k)bdd = {z ∈ CG(S)(k) |χ(z) ∈ O× for all χ ∈ X∗(k, CG(S))}.

2.1.4 Special k-objects

In this subsection, we pass from a�ne building structure over knr to that over k. This
procedure means exactly "unrami�ed descent".

Galois actions

We have described the G(knr)-action on B(Gss/knr). Then Γ acts naturally on the a�ne
building B(Gss/knr) by polysimplicial isometries. Moreover, the Γ-action on B(Gss/knr) is
compatibe with the G(knr)-action. More precisely, the Γ-action is supposed to satisfy the
following conditions.

(1) The orbit {σx |σ ∈ Γ} is �nite for any x ∈ B(Gss/knr).

(2) (Compatibility, [BT84, 4.2.12]). For any g ∈ G(knr), x ∈ B(Gss/knr), σ ∈ Γ, we have

σ(g · x) = σg · σx.

Unrami�ed descents

Let Ω be a non-empty bounded subset of B(Gss/knr). If Ω is Γ-stable, then the Onr-
group schemes GΩ and G ◦

Ω descend uniquely to smooth a�ne O-group schemes. By abuse of
notation, we still write GΩ and G ◦

Ω for the resulting O-group schemes.
Similarly, the Onr-torus T also descends uniquely to a closed O-torus of G ◦

Ω, which will
be denoted by T as well. Then generic �bre Tk of T is T and the special �bre Tκ of T is
a maximal κ-torus of G ◦

Ω,κ.
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De�nition of special k-objects

Since Γ acts on B(Gss/knr), we are allowed to de�ne B := B(Gss/knr)
Γ. Note that B is

closed and convex in B(Gss/knr). Moreover, B is stable under the G(k)-action on B(Gss/knr).

De�nition 2.1.16.

(1) A facet F of the building B(Gss/knr) is a k-facet, if F ∩ B ̸= ∅.

(2) Maximal k-facets (with respect to ≺) of B(Gss/knr) are called k-chambers.

(3) A k-torus T ⊂ G is a special k-torus, if it contains a maximal k-split torus of G and
Tnr ⊂ Gnr is a maximal knr-split torus.

(4) A special k-apartment of B(Gss/knr) is the apartment corresponding to Tnr by (2.1)
for some special k-torus T .

Remark 2.1.17. A facet F of B(Gss/knr) is a k-facet if and only if F is Γ-stable.

Existence of special k-tori

We show that B(Gss/knr) does contain special k-apartments. By de�nition, it su�ces to
prove that G contains special k-tori.

Lemma 2.1.18. Let G be a smooth a�ne O-group scheme.

(1) Let T ⊂ Gκ be a κ-torus. There exists a closed O-torus T ⊂ G such that Tκ ≃ T .

(2) Let T ,T ′ ⊂ G be two closed O-tori such that there is an element g ∈ Gκ(κ) such that

gTκg
−1 = T ′

κ . There exists g ∈ G (O) lying over g such that gT g−1 = T ′.

(3) Let T be a closed O-torus of G . The normalizer NG (T ) is a closed smooth O-subgroup

scheme of G . In particular, the natural homomorphism below is surjective

NG (T )(O) → NG (T )(κ).

Proof. See [Pra20, Proposition 2.1].

Proposition 2.1.19. Any connected reductive group G contains a special k-torus.

We use Lemma 2.1.18(1) to produce anO-torus T whose generic �bre is a special k-torus.

Proof. Let S be a maximal k-split torus of G and S be the split O-torus with generic �bre
S. Then S (Onr) ⊂ G(knr) is a maximal bounded subgroup. According to the Bruhat�Tits
�xed point theorem [BT72, Proposition 3.2.4], there exists x ∈ B(Gss/knr) �xed under the
S (Onr)-action. By Galois theory of valuations, S (Onr) is Γ-stable. It follows that x is �xed
by Γ as well, i.e., x ∈ B = B(Gss/knr)

Γ.
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Since S (Onr) �xes x, there is a natural inclusion S (Onr) → Gx(Onr) (see (2.2)) which
yields an O-group scheme homomorphism φ : S → Gx being the inclusion S → G on the
generic �bre (see [BT84, Proposition 1.7.6]). We identify S with a closed O-torus of Gx via
φ.

Let M := CGx(S ) which is a smooth O-group scheme by [SGA3II, Exposé XI, Corollary
5.3]. Applying Lemma 2.1.18 to M yields a closed O-torus T ⊂ M such that Tκ is a
maximal κ-torus of Mκ. Therefore T contains S (it is a central torus in M ) and it follows
that S ≃ Sk is contained in T := Tk. By construction, Tκ ⊂ Mκ is a maximal torus of Gx,κ

which splits automatically over κsep. Subsequently, Tnr is a maximal knr-split torus of Gnr as
Onr is a Henselian discrete valuation ring. (See also [CTHH+22, Proposition A.1].)

Properties of k-chambers

We want to show that special k-apartments contain k-chambers. First of all, we would
like to �nd a criterion on whether a bounded subset is contained in a given apartment.

Lemma 2.1.20. Let T, T0 be maximal knr-split tori of Gnr and let A,A0 be the corresponding

apartments. Let Ω ⊂ A be a non-empty bounded subset. Then Ω ⊂ A0 if and only if one of

the following equivalent conditions hold:

(1) There is an element g ∈ G ◦
Ω(Onr) such that T0 = gTg−1.

(2) The group scheme G ◦
Ω contains a closed Onr-torus with generic �bre T0.

(3) The intersection G ◦
Ω(Onr) ∩ T0(knr) is the maximal bounded subgroup of T0(knr).

Proof. See [Pra20, Proposition 2.2].

To proceed, we need to set forth the relation between k-chambers and pseudo-parabolic
κ-subgroups. Compare Hypothesis 2.1.10 over κsep with Remark 2.1.21 below over κ.

Remark 2.1.21. Let Ω0 ≺ Ω ⊂ B(Gss/knr) be Γ-stable non-empty bounded subsets. Then
ρΩ0,Ω : G ◦

Ω → G ◦
Ω0

descends to an O-group scheme homomorphism that is identity on the
generic �bre G.

(1) Let F0 ≺ F be two k-facets of B(Gss/knr). Then the image p(F0|F ) of G ◦
F,κ → G ◦

F0,κ
is

a pseudo-parabolic κ-subgroup of G ◦
F0,κ

.

(2) There is an order-preserving bijective map

{F |F0 ≺ F} → {pseudo-parabolic κ-subgroup of G ◦
F0,κ

}, F 7→ p(F0|F ).

Here the latter set is partially-ordered by opposite of inclusion. Note also that the
canonical projection G ◦

F0,κ
→ G ◦

F0,κ
/ radu(G ◦

F0,κ
) induces an inclusion preserving bijec-

tion

{pseudo-parabolic subgroups of G ◦
F0,κ

} → {those of G ◦
F0,κ

/ radu(G ◦
F0,κ

)}.
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(3) Thus C is a k-chamber containing a given k-facet F0 if and only if p(F0|C) is a minimal
pseudo-parabolic κ-subgroup of G ◦

F0,κ
.

(4) Since a sequence F0 ≺ F1 ≺ · · · ≺ Fn of k-facets corresponds to a decreasing se-
quence p(F0|F1) ⊃ · · · ⊃ p(F0|Fn) of pseudo-parabolic κ-subgroups of G ◦

F0,κ
, we see

that codim(F0 ∩ B,B) is the κ-rank of the derived subgroup of G ◦
F0,κ

.

Remark 2.1.21 tells us when a k-facet is a k-chamber. We also have the following criterion.

Lemma 2.1.22 ([CGP15, Lemma 2.2.3]). A k-facet F is a k-chamber if and only if the

pseudo-reductive group G ◦
F,κ/ rad

u(G ◦
F,κ) contains a unique maximal κ-split torus.

Consequently, the group scheme G ◦
F plays an important role in Bruhat�Tits theory. This

leads to the following de�nition.

De�nition 2.1.23. For a facet F of B(Gss/knr), G ◦
F (resp. G ◦

F (Onr)) is called the Bruhat�
Tits parahoric group scheme (resp. the parahoric subgroup of G(knr)).

Proposition 2.1.24. Let A be any special k-apartment of B(Gss/knr). Then A contains a

k-chamber.

Proof. Let T be the corresponding special k-torus. By de�nition, T contains a maximal k-
split torus S ⊂ G and Tnr is a maximal knr-split torus of Gnr. Since A is Γ-stable, it contains
a point x ∈ B by the Bruhat�Tits �xed point theorem. Let F be a facet of B(Gss/knr)
contained in A and containing x. As x ∈ B, F is a k-facet.

� We �nd a minimal pseudo-parabolic κ-subgroup of G ◦
F,κ. Let T ⊂ G ◦

F be the closed
O-torus with generic �bre T and let S ⊂ T be the maximal O-split subtorus. Thus
Sk = S by construction. We �x a minimal pseudo-parabolic κ-subgroup P of G ◦

F,κ

containing Sκ. Note that Tκ ⊂ P by [CGP15, Proposition C.2.4].

� We proceed a k-facet C from P. Let P be the inverse image of P(κsep) in G ◦
F (Onr)

under the natural homomorphism G ◦
F (Onr) → G ◦

F,κ(κsep). Then P ⊂ G ◦
F (Onr) is a

parahoric subgroup of G(knr) by Hypothesis 2.1.10(4). Moreover, T (Onr) ⊂ P by
Tκ ⊂ P and P is stable under the Γ-action on G(knr). Let C be the facet of B(Gss/knr)
�xed by P . Since F ≺ C and C is Γ-stable, C is a k-facet.

� We show that C is as desired. Since P is a minimal pseudo-parabolic κ-subgroup of
G ◦
F,κ, it is a k-chamber. Finally, since T (Onr) ⊂ P , we see that C indeed lies in A by

Lemma 2.1.20.

2.2 A�ne building of G(k)

In this section, we will show that B := B(Gss/knr)
Γ has an a�ne building structure.
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2.2.1 Polysimplicial complex structure

We de�ne facets, chambers and apartments in B. In the sequel, we show that these
constructions make B into an a�ne building.

Construction 2.2.1. We endow B := B(Gss/knr)
Γ with a polysimplicial complex structure.

� Facets of B are of the form F ∩ B, where F runs over Γ-stable facets of B(Gss/knr).

� Faces. If U ≺ V (i.e., U ⊂ V) are two facets of B, then we say that U is a face of V.

� Chambers of B are maximal facets, i.e., C ∩ B for some k-chamber C of B(Gss/knr).

� Apartments of B are of the form A ∩ B, where A runs through special k-apartments
of B(Gss/knr). We also have dimA = rankk(G

ss).

Remark 2.2.2.

(1) Any chamber of B, hence the a�ne building B, has dimension rankk(G
ss). In partic-

ular, k-chambers are of equal dimension. Moreover, note that a k-chamber needs not
be a chamber.

(2) Under these construction, there is a bijective correspondence (compare with (2.1))

{apartments of B} → {maximal k-split tori of G}.

2.2.2 Results on anisotropic groups

Lemma 2.2.3. Let A be a special k-apartment of B(Gss/knr).

(1) Let C be a k-chamber contained in A and let x ∈ B be a point. There exists a spacial

k-apartment containing both C and x.

(2) In particular, any point of B lies in a special k-apartment of B(Gss/knr).

Proof. See [Pra20, Proposition 2.6].

Proposition 2.2.4.

(1) Given distinct points x ̸= y ∈ B, there exists a spacial k-apartment containing {x, y}.

(2) Given any two k-facets of B(Gss/knr), there is a spacial k-apartment containing them.

Proof.

(1) Let F be a k-facet of B(Gss/knr) containing y. Let C be a maximal k-facet such that
F ≺ C. Thus C is a k-chamber (because it is maximal). Let z ∈ C ∩ B. According to
Lemma 2.2.3(2), there is a special k-apartment A0 containing z. Thus C ⊂ A0 (by the
same proof as Proposition 2.1.24). Then applying Lemma 2.2.3(1) to C and x yields a
special k-apartment A contain both C and x. In particular, C ⊂ A. Thus F ⊂ C ⊂ A,
and so y ∈ A as well.
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(2) Let F1 and F2 be two k-facets of B(Gss/knr) and let Ci be respective k-chambers such
that Fi ≺ Ci. Suppose zi ∈ Ci ∩ B and let A be a special k-apartment containing zi.
Thus Ci ⊂ Ci ⊂ A. In particular, Fi ⊂ Ci lies in A.

The above results are useful in the study of anisotropic groups.

Proposition 2.2.5. If G is k-anisotropic, then B = B(Gss/knr)
Γ is a singleton.

Proof. Suppose that B contains two distinct points x ̸= y. Applying Proposition 2.2.4(1)
yields a special k-apartment A of B(Gss/knr) containing {x, y}. Let T ⊂ G be the special k-
torus corresponding to A. Recall Hypothesis 2.1.4 that A is an a�ne space under V (Tnr) :=
X∗(knr, T )⊗Z R. Since G is k-anisotropic, T is k-anisotropic as well. Thus

V (Tnr)
Γ = (X∗(knr, T )⊗ZR)Γ = X∗(k, T )⊗ZR = 0

is trivial. Consequently, AΓ is a singleton as well which contradicts to x ̸= y ∈ AΓ ⊂ B.

2.2.3 Unrami�ed descent of buildings

In this subsection, we show that the Bruhat�Tits buildings descend from knr to k. More
precisely, we show that the polysimplicial complex B := B(Gss/knr)

Γ is an a�ne building.
We may assume that G is semi-simple (Hypothesis 2.1.3). Hence B(Gss/knr) = B(G/knr).

Theorem 2.2.6. The polysimplicial complex B := B(G/knr)
Γ is an a�ne building.

� Its apartments are A := A ∩ B for special k-apartments of B(G/knr).

� Its chambers are C := C ∩ B for k-chambers of B(G/knr).

� Its facets are F := F ∩ B for k-facets of B(G/knr).

In addition, the group G(k) acts on B by polysimplicial isometries and apartments are a�ne

spaces B(CG(S)/knr)
Γ under V (S) := X∗(k, S)⊗ZR for some maximal k-split tori S of G.

Remark 2.2.7. For convenience, we recall what we need to show here.

(1) The polysimplicial complex B is a chamber complex. See Proposition 2.2.8 below.

(2) The chamber complex B is thick and any apartment in B is a thin chamber complex.
See Proposition 2.2.9 below.

(3) Any two chambers belong to an apartment. This is already done in Proposition 2.2.4.

(4) Given two apartments A1,A2 and two facets F1, F2 ∈ A1 ∩A2, there exists a polysim-
plicial isomorphism A1 → A2 �xing F1 and F2 pointwise. See Proposition 2.2.10 below.

(5) The last statement on the description B(CG(S)/knr)
Γ will be omitted. See for instance

[Pra20, Proposition 2.10] for a proof. Thus apartments are indeed a�ne spaces!
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We �rst show that B is a chamber complex. To this end, it su�ces to show the following

Proposition 2.2.8. Let A be an apartment of B and let C,C′ be two chambers in A. There
is a gallery joining C and C′ in A, i.e., there is a �nite sequence

C = C0,C1, . . . ,Cn = C′

of chambers in A such that Ci and Ci+1 share a facet of codimension 1 for each 0 ≤ i ≤ n−1.

Proof. Let A(2) be the union of all facets in A of codimension at least 2. Then A(2) is a
closed subset of the a�ne space A of codimension 2, so A − A(2) is arcwise connected for
dimension reasons. Thus for any x ∈ C and x′ ∈ C′, there is a polyline in A−A(2) joining x
and x′. Now the chambers in A meeting this polyline form a gallery joining C and C′.

A panel in a chamber complex is a facet of codimension 1.

Proposition 2.2.9. The chamber complex B is thick and any apartment A of B is thin.

Proof. By de�nition, we need to show that:

(1) any panel in B is a face of at least three chambers;

(2) any panel in A is a face of exactly two chambers in A.

Let F := F ∩B be a panel for some k-facet F of B(G/knr) (which is not a k-chamber for
dimension reasons). Recall that any minimal pseudo-parabolic κ-subgroup of G ◦

F,κ determines
a k-chamber containing F . Thus proving both assertions needs to consider the number of
minimal pseudo-parabolic κ-subgroups of G ◦

F,κ.

(1) We show that G ◦
F,κ contains at least three distinct minimal pseudo-parabolic subgroups.

� If κ is �nite, then pseudo-parabolic subgroups are parabolic. Note that any non-
trivial irreducible projective κ-variety has at least three κ-point. Thus G ◦

F,κ con-
tains at least three parabolic subgroups by passing to quotients.

� If κ is in�nite, then G ◦
F,κ contains in�nitely many minimal pseudo-parabolic sub-

groups.

Therefore, F is at least a face of three distinct chambers.

(2) Similarly, we show that there exist exactly two minimal pseudo-parabolic subgroups.
Suppose that F is contained in an apartment A of B. Let S be the maximal k-split
torus of G corresponding to A and let S be the closed O-split torus of G ◦

F = G ◦
F with

generic �bre S. Then there is a bijective correspondence between

{chambers of B contained in A with F a face}

and

{minimal pseudo-parabolic κ-subgroups of G ◦
F,κ/ rad

u(G ◦
F,κ) containing Sκ}.
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By Remark 2.1.21(4), the κ-rank of the derived subgroup of G ◦
F,κ/ rad

u(G ◦
F,κ) equals

codim(F,B) = 1. Therefore we conclude that G ◦
F,κ/ rad

u(G ◦
F,κ) has exactly two minimal

pseudo-parabolic κ-subgroups containing Sκ. (For instance, see [Mil17, 25.14] on semi-
simple K-groups of K-rank 1.)

Finally, we prove that for any chambers A1,A2 of B, there exists a polysimplicial isomor-
phism A1 → A2 �xing two given facets contained in A1 ∩ A2.

Proposition 2.2.10. For i = 1, 2, let Ai be special k-apartments of B(G/knr) with corre-

sponding special k-torus Ti. Let Ai := Ai∩B. Let S be a k-split torus contained in T1∩T2. Let

Ω ̸= ∅ be a Γ-stable bounded subset of A1 ∩A2. There exists an element g ∈ G ◦
Ω(O) ⊂ G(k)

that commutes with S and sends A1 onto A2.

Proof. Let Si be the maximal k-split torus of G contained in Ti. Let Ti be the closed O-tori
of G ◦

Ω with generic �bre Ti and let Si be the maximal O-split subtori. Thus the generic �bre
of Si is Si. Let S be the closed O-torus contained in S1∩S2 whose generic �bre is S. The
construction may be visualized by the following diagrams

Si
//

yy

��

Si

{{

��

S //

xx

��

S

zz

��

Ti
//

��

Ti

��

S1 ∩ S2
//

��

S1 ∩ S2

��

Spec k // SpecO Spec k // SpecO.

Let M := CG ◦
Ω
(S ) which is a smooth a�ne O-subgroup scheme by [SGA3II, Exposé XI,

Corollaire 5.3]. Fibres of M are connected since the centralizer of a torus in a connected
smooth a�ne group scheme is connected.

Applying Lemma 2.1.18 to M , we see that the special �bres S1,κ and S2,κ are maximal
κ-split tori in Mκ. Hence there exists g ∈ Mκ(κ) that conjugates S1,κ onto S2,κ. By
Lemma 2.1.18(2), there exists g ∈ M (O) ⊂ G(k) lying over g such that gS1g

−1 = S2. In
particular, we obtain gS1g

−1 = S2 by taking generic �bres. Hence

g · AΓ
1 = g · B(CG(S1)/knr)

Γ = B(CG(S2)/knr)
Γ = AΓ

2 .

Finally, note that since g ∈ M (O) ⊂ G ◦
Ω(O), it �xes Ω pointwise.

2.2.4 Conjugacy of subgroups

In this subsection, we collect several results on conjugate subgroups which will be used
soon. Let G be a connected smooth a�ne algebraic group over a �eld K. The following
results tell us that maximal tori are conjugate. See [Mil17, Theorem 17.10 and Theorem
17.105] for proofs of the following result.

Theorem 2.2.11.
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(1) Maximal tori of G are conjugate under G(K).

(2) Maximal K-split tori of G are conjugate under G(K).

We shall also need to consider parabolic subgroups. See [Mil17, Theorem 17.9 and The-
orem 25.8] and [CGP15, Theorem C.2.5] respectively for proofs of the following theorem.

Theorem 2.2.12.

(1) Suppose that G is quasi-split. Borel subgroups of G are conjugate under G(K).

(2) Minimal parabolic subgroups of G are conjugate under G(K).

(3) Minimal pseudo-parabolic subgroups of G are conjugate under G(K).

2.2.5 Transitive group actions

In this subsection, we still assume that G is semi-simple for simplicity.

Proposition 2.2.13. Let A be an apartment of B with corresponding maximal k-split torus
S ⊂ G. Then the group NG(S)(k) acts transitively on the set of chambers of A.

Proof. Let C ̸= C′ be two chambers of A and let C = C0,C1, . . . ,Cn = C′ be a gallery joining
C and C′. If there exists gi ∈ NG(S)(k) such that gi · Ci = Ci+1 for 0 ≤ i ≤ n − 1, then
g := g0 · · · gn−1 is such that g ·C = C′. Hence it will be su�cient to show that if two chambers
C ̸= C′ in A sharing a panel F, there is an element g ∈ NG(S)(k) such that g · C = C′.

Suppose that C,C′ correspond to respective minimal pseudo-parabolic κ-subgroups P,P
′

of G ◦
F,κ. Let S ⊂ G ◦

F,κ be the closed O-split torus with generic �bre S. So Sκ ⊂ Gκ is the

maximal κ-split torus by construction. Moreover, since C,C′ ⊂ A, we see that Sκ ⊂ P and
Sκ ⊂ P

′
by Lemma 2.1.20.

By Theorem 2.2.11 and 2.2.12, there is an element g ∈ Gκ(κ) which normalizes Sκ and

conjugates P onto P
′
. Now applying Lemma 2.1.18(iii) yields an element g ∈ NG (S )(O)

lying over g. Note that g normalizes S (by taking generic �bres) and hence g ∈ NG(S)(k).
It �xes F pointwise and g · F = F′.

Corollary 2.2.14. The group G(k) acts transitively on the set of ordered pairs consisting of

an apartment A of B and a chamber C in A.

Proof. Let (A,C) and (A′,C′) be two such pairs. Since maximal k-split tori of G are conjugate
to each other under G(k), we conclude that G(k) acts transitively on the set of apartments
of B. Take g ∈ G(k) such that A′ = g · A.

Let S ′ be the maximal k-split torus corresponding to A′. Applying Proposition 2.2.13
to C′ and g · C in A′ yields an element n ∈ NG(S

′)(k) such that C′ = n · (g · C). Therefore
(ng) · (A,C) = (A′,C′).
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2.2.6 Parahoric subgroups

Let G be a connected reductive group over k. For any point x ∈ B, let G ◦
x be the Bruhat�

Tits parahoric O-group scheme associated to x and let G ◦
x (O) be the parahoric subgroup of

G(k) associated to x. We summarize some results for this setting.

(1) By construction of G ◦
x , its generic �bre is the connected reductive group G.

(2) Let F := F ∩ B be a facet of B containing x, where F is a k-facet of B(Gss/knr). We
have G ◦

x = G ◦
F = G ◦

F by Hypothesis 2.1.7(2).

(3) The subgroup G ◦
x (O) = G ◦

F (O) = G ◦
F (Onr)

Γ = G ◦
F (Onr)∩G(k) ofG(k) �xes F pointwise.

Lemma 2.2.15.

(1) Any parahoric subgroup of G(k) is of the form P Γ for some Γ-stable parahoric subgroup
P of G(knr).

(2) Any minimal parahoric subgroup of G(k) is of the form G ◦
C (O) for a chamber C of B.

Proof.

(1) Let G ◦
F (O) be a parahoric subgroup of G(k). Then G ◦

F (O) = G ◦
F (Onr)

Γ = P Γ with
P = G ◦

F (Onr), as desired.

(2) Let G ◦
F (O) be a minimal parahoric subgroup of G(k) and let F be the unique k-facet

of B(Gss/knr) containing F. Thus F is contained in some maximal k-facet C. It follows
that G ◦

C (O) ⊂ G ◦
F (O), where C = C ∩ B. In particular, we must have F = C, i.e., F is

a chamber.

Proposition 2.2.16. The minimal parahoric subgroups of G(k) are conjugate under Gss(k).

Proof. The minimal parahoric subgroups of G(k) are the subgroups G ◦
C (O) for chambers C

in B. Corollary 2.2.14 implies that Gss(k) acts transitively on the set of chambers of B.

Proposition 2.2.17. Let G be a semi-simple simply connected group over k. Suppose that

G is quasi-split over knr. If P ⊂ G(k) is a parahoric subgroup, then NG(k)(P ) = P .

Proof. Let F be a facet of B and F the k-facet of B(G/knr) containing F. Then we have

StabG(knr)(F) = G ◦
F (Onr) = G ◦

F (Onr)

by Hypothesis 2.1.7. It follows that

StabG(k)(F) = G ◦
F (O).

Again by Hypothesis 2.1.7, we conclude that G ◦
F = GF = GF . Thus StabG(k)(F) �xes F and

F pointwise.
Now suppose P = G ◦

F (O) = StabG(k)(F) for some facet F of B. Then NG(k)(P ) also
stabilizes F, and hence it coincides with P .
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Chapter 3

Application to Galois Cohomology

3.1 Preliminaries

3.1.1 Galois cohomology

Cohomology of pro�nite groups

Let ∆ be a pro�nite group and let G be an abstract ∆-group. We denote the ∆-action
on G by (σ, g) 7→ σg.

De�nition 3.1.1.

(1) A cocycle (or a crossed homomorphism) c : ∆ → G is a map such that

cστ = cσ · σcτ .

The set of cocycles is denoted by Z1(∆,G).

(2) Two cocycles c, z ∈ Z1(∆,G) are cohomologous if

zσ = g−1 · cσ · σg.

We simply write c ∼ z if they are cohomologous.

(3) We put
H1(∆,G) := Z1(∆,G)/ ∼ .

Remark 3.1.2.

(1) Actually, we have the following description

H1(∆,G) =
⋃

H1(∆/U,GU)

where U runs through all open normal subgroups of ∆. Moreover, the union is a
directed union.

(2) If G is a ∆-module, then H i(∆,G) =
⋃
H i(∆/U,GU) is a torsion abelian group for

each i ≥ 1. Here H i(∆/U,GU) is the usual abelian cohomology group of �nite groups.
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Galois cohomology and inner twists

Let K be a �eld and let Ksep be a �xed separable closure of K. Then Gal(Ksep|K) is a
pro�nite group and G(Ksep) is a Galois module.

De�nition 3.1.3. Let G be an algebraic group over K. We put

H1(K,G) := H1(Gal(Ksep|K),G(Ksep)).

Let G be a smooth algebraic group over K. We have a homomorphism of Gal(Ksep|K)-
groups

G(Ksep) → Aut(Gsep), g 7→ Int(g)

which induces a map of pointed sets

H1(K,G) → H1(K,Aut(Gsep)).

The image of [c] ∈ H1(K,G) inH1(K,Aut(Gsep)) de�nes a twist G
c, called the inner Galois

twist of G. We shall also say that G and Gc have the same inner type.
The homomorphism of algebraic groups

G → Inn(G), g 7→ Int(g)

induces an isomorphism of algebraic groups

Gadj := G/Z(G) ≃ Inn(G).

Thus algebraic groups having the same inner type as G are classi�ed by H1(K,Gadj).

Cohomological dimensions

De�nition 3.1.4. Let K be a �eld.

(1) We say that K has cohomological dimension ≤ d, denoted by cd(K) ≤ d, if for any
�nite Gal(Ksep|K)-module A, we have Hn(K,A) = 0 for any n ≥ d+ 1.

(2) We say that K has cohomological dimension d, denoted by cd(K) = d, if

d = max{n | there is a �nite Gal(Ksep|K)-module A such that Hn(K,A) ̸= 0}.

(3) We say that K is a C1-�eld if every homogenous polynomial f ∈ K[t1, . . . , tn] of degree
d < n has a non-trivial zero.

For �elds of cohomological dimension ≤ 1, we have a simpler description: cd(K) ≤ 1 if
and only if Br(L) = 0 for any algebraic extension L|K.

Example 3.1.5. We collect some well-known C1-�elds. In particular, they are of cd(K) ≤ 1.
See [GS17, �6.2] for more information.
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(1) Every C1-�eld has cohomological dimension ≤ 1.

(2) Finite extensions of C1-�elds are C1-�elds.

(3) (Chevalley). Finite �elds are C1-�elds, hence they have cohomological dimension ≤ 1.

(4) (Tsen). The �eld C(t) is C1, hence it has cohomological dimension ≤ 1.

(5) (Lang). Let K be a �eld with charK = 0. The �eld K((t))nr is a C1-�eld.

(6) In particular, the �eld K((t)) is a C1-�eld if K is algebraically closed.

Example 3.1.6.

(1) If K is separably closed, then cd(K) = 0.

(2) If K is a �nite �eld, then cd(K) = 1.

(3) If K is a p-adic �eld or a totally imaginary number �eld, then cd(K) = 2.

(4) If K is a real number �eld, then cd(K) = ∞ since cd(R) = ∞.

3.1.2 A theorem of Steinberg�Borel�Springer

Let K be a �eld of cd(K) ≤ 1. Serre's conjecture I predicts H1(K,G) = 1 for any
connected a�ne algebraic group G over K. It is proved �rst by Steinberg in 1962 for prefert
�elds and later by Borel�Springer in 1966 in general.

Theorem 3.1.7 (Steinberg, Borel�Springer). Let K be a �eld of cd(K) ≤ 1. Let G be a

connected a�ne algebraic group over K. Assume that either K is perfect or G is reductive.

Then H1(K,G) = 1. In particular, Every connected a�ne algebraic group over K is quasi-

split.

Proof.

(1) We show that H1(K,G) = 1.

� When K is perfect, see [Ser65, Chapter III, Section 2.3, Theorem 1′].

� When G is reductive, see [BS68] and [Ser65, pp. 133, Remarks 1)].

(2) Let G0 be a quasi-split K-group of the same inner type as G. Since H1(K,Gad
0 ) = 1

by (1), there exists only one K-form of a given inner type. Hence G = G0 is quasi-
split.

Proposition 3.1.8. Let G be a connected reductive group over knr. Let k
∧
nr be the completion

of knr. Then the natural map of pointed sets below is bijective

ρ : H1(knr,G) → H1(k∧
nr,G).
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Sketch. We only sketch the idea here. See [GGMB14, Proposition 3.5.3(2)] for a proof.
Embed G into GLV and put X = GLV /G (which is an algebraic space over knr). Then

consider the following commutative diagram of pointed sets with exact rows

X(knr) //

��

H1(knr,G) //

��

1

X(k∧
nr) // H1(k∧

nr,G) // 1.

Here we have used Hilbert's Theorem 90 to conclude H1(−,GLV ) = 1.

� Let E be a G-torsor over knr such that E(k∧
nr) ̸= ∅. Then E is a separable algebraic

space locally of �nite type over knr. One obtains E(knr) ̸= ∅ by some sort of weak
approximation [GGMB14, Proposition 3.5.2]. This shows the triviality of Ker ρ. Hence
ρ is injective by a twisting argument.

� Again by [GGMB14, Proposition 3.5.2], one concludes the surjectivity of X(knr) →
X(k∧

nr) → H1(k∧
nr,G). Then the surjectivity of ρ follows by a diagram chase.

Corollary 3.1.9. Let G be a connected reductive group over knr. Suppose that κ is perfect

with cd(κ) ≤ 1. Then H1(knr,G) = 1. In particular, every connected reductive knr-group is

quasi-split.

Proof. Let k∧
nr be the completion of knr with respect to v. So v extends uniquely to k∧

nr

and the residue �eld of k∧
nr coincides with that of knr. By assumption κ is perfect, thus

κ(knr) = κ(k∧
nr) = κ is the algebraic closure of κ. Consequently, k∧

nr is a C1-�eld by Lang's
theorem. Hence cd(k∧

nr) ≤ 1. Applying Proposition 3.1.8 to G implies that

H1(knr,G) → H1(k∧
nr,G)

is bijective. Now Theorem 3.1.7 tells us that H1(knr,G) = 1, as desired.

3.1.3 Unrami�ed Galois descent

Let p : S ′ → S be a morphism of schemes. Let S ′′ = S ′ ×S S
′ and let S ′′′ = S ′ ×S S

′′. We
are interested in the essential image of the functor

p∗ : SchS → SchS′ , X 7→ X ×S S ′.

Construction 3.1.10 (Covering data). Consider the following Cartesian diagram

S ′′ p1
//

p2
��

S ′

p

��

S ′ p
// S.

Take any X ′ ∈ SchS′ . An isomorphism φ : p∗1X
′ → p∗2X

′ is called a covering datum of X ′.
Thus we obtain a category SchcovS′ whose objects are pairs (X ′, φ) consisting of an S ′-scheme
X ′ and a covering datum φ of X ′.
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Note that if X ′ = p∗X for some X ∈ SchS, then p ◦ p1 = p ◦ p2 gives us that

p∗1(p
∗X) = (p ◦ p1)∗X = (p ◦ p2)∗X = p∗2(p

∗X).

Thus we automatically obtain a covering datum of p∗X.

Construction 3.1.11 (Descent data). Let pij : S ′′′ → S ′′ be respective projections for
1 ≤ i < j ≤ 3. A necessary condition for (X ′, φ) ∈ SchcovS′ belonging to the essential image
of p∗ : SchS → SchS′ is the commutativity of the diagram

p∗12p
∗
1X

′ p∗12φ // p∗12p
∗
2X

′ p∗23p
∗
1X

′ p∗23φ // p∗23p
∗
2X

′

p∗13p
∗
1X

′ p∗13φ // p∗13p
∗
2X

′

The commutativity may be simply written as

p∗13φ = p∗23φ ◦ p∗12φ,

which is usually referred to as the cocycle condition for φ.

� A covering datum φ of X ′ satisfying the cocycle condition will be called a descent
datum of X ′. Similarly, we obtain a category SchdescS′ .

� A descent datum is e�ective if the pair (X ′, φ) is isomorphic to p∗X for someX ∈ SchS,
where p∗X is endowed with the canonical descent datum.

See [BLR90, �6.1, Theorem 6] for a proof of the following theorem.

Theorem 3.1.12. Let p : S ′ → S be a fpqc morphism of a�ne schemes. A descent datum

(X ′, φ) is e�ective if and only if there is an open quasi-a�ne covering X ′ =
⋃
U ′ such that

φ induces isomorphisms p∗1U
′ ≃ p∗2U

′.

Example 3.1.13 (Unrami�ed Galois descent). Let p : SpecOnr → SpecO (which is a Galois
covering). Let I = G ◦

C(Onr) be the Iwahori subgroup of G(knr) for some chamber C. Then
H1(Γ, I) classi�es G ◦

C(Onr)-torsors with Γ-actions. But giving a Γ-action on such a torsorX is

equivalent to give a descent datum on an Onr-scheme X̃ with X̃ (Onr) = X by [BLR90, �6.2,

Example B], so X̃ descends to a G ◦
C-torsor X over O by Theorem 3.1.12.

Note that X always admits an Onr-point. Indeed, the O-scheme X is smooth since it
is a G ◦

C-torsor. On the other hand, X ×O Onr always has a κsep-point, hence X (Onr) ̸= ∅
by the Henselian assumption. Summing up, we have showed that H1(Γ, I) = H1

ét(O,G ◦
C).

3.2 Proof of main theorems

In this section, we assume throughout that κ is perfect and that cd(κ) ≤ 1. Thus the
Bruhat�Tits theory is available for G over knr.
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3.2.1 Preliminaries

Residually quasi-split groups

Corollary 3.2.1. If κ is perfect and cd(κ) ≤ 1, then every k-chamber is a chamber of

B(Gss/knr).

Proof. Let C be a k-chamber of B(Gss/knr) and let F be any k-facet contained in C. Then
C corresponds to a minimal pseudo-parabolic κ-subgroup p(F |C) of G ◦

F,κ. We need to show
that p(F |C) is a minimal pseudo-parabolic κsep-subgroup of G ◦

F,κsep
.

By assumption and Theorem 3.1.7(2), the group G ◦
F,κ is quasi-split over κ. So minimal

pseudo-parabolic κ-subgroups are Borel κ-subgroups. In particular, p(F |C) is still a minimal
pseudo-parabolic κsep-subgroup of G ◦

F,κsep
. So C is a chamber of B(Gss/knr).

De�nition 3.2.2. Let G be a connected reductive group.

(1) We say thatG is residually quasi-split if every k-chamber in B(Gss/knr) is a chamber.

(2) Suppose that G is residually quasi-split. The minimal parahoric subgroups of G(k) are
called the Iwahori subgroups of G(k).

Example 3.2.3. If κ is perfect and cd(κ) ≤ 1, then every semi-simple k-group G is residually
quasi-split by Corollary 3.2.1.

Results on anisotropic groups

Theorem 3.2.4. Let G be an absolutely almost-simple simply connected group over k. If G
is k-anisotropic, then G splits over knr and G is of type A.

To prove that G is of type A, the idea is to prove that Γ acts transitively on a base of
the a�ne Dynkin diagram of Gnr with respect to some maximal knr-split torus. Since we
did not talk about the relation between roots systems and Bruhat�Tits theory, the following
proof is not self-contained.

Proof. Let A be a special k-apartment of B(G/knr) and let T be the special k-torus of G
corresponding to A. Let C be a k-chamber in A. By de�nition of k-chambers, C ∩ B ≠ ∅.
But G is k-anisotropic, so B is a singleton by Proposition 2.2.5. It follows that C ∩ B = B.

Let I = G ◦
C(Onr) be the Iwahori subgroup of G(knr) determined by the chamber C of

B(G/knr). Then I is Γ-stable. Because T is a special k-torus, Tnr is a maximal knr-split
torus of Gnr. Consider the a�ne root system Φaff(Gnr, Tnr) over knr and let ∆ be the base
of Φaff(Gnr, Tnr) determined by the chamber C. According to the description of irreducible
a�ne root systems, it su�ces to show that Γ acts transitively on ∆.

By construction, ∆ is Γ-stable1 and there is a natural Γ-equivariant bijective map VC →
∆. By Bruhat�Tits theory, Γ acts transitively on VC , and hence it acts transitively on ∆.

Therefore Gnr is knr-split and that G is of type A. Otherwise, the action of the automor-
phism group of the Dynkin diagram of ∆ cannot be transitive on ∆.

1The Galois group Γ acts naturally on the a�ne root system Φaff(Gnr, Tnr).
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Now we show that H1(k,G) = 1. We �rst observe that H1(k,G) = H1(Γ, G(knr)). Then
we show that H1(Γ,G ◦

C(Onr)) → H1(Γ, G(knr)) is surjective for some Iwahori subgroup.
Subsequently, Galois descent tells us H1(Γ, I) = H1

ét(O,G ◦
C). Thus it su�ces to show that

any G ◦
C-torsor X is trivial, i.e., X (O) ̸= ∅. This is guaranteed by the Henselian assumption

and Steinberg's theorem.

Theorem 3.2.5. Let G be a semi-simple simply connected group over k. Then H1(k,G) = 1.

Proof. By Corollary 3.1.9, we have H1(knr, G) = 1. Thus

H1(k,G) = H1(Γ, G(knr)) = Z1(Γ, G(knr))/ ∼,

where the �rst equality holds because H1(k,G) is a directed union. Take any c : Γ → G(knr),
σ 7→ cσ in Z1(Γ, G(knr)). Since Gnr ≃ (cG)nr, we may identify G(knr) with cG(knr) as abstract
groups.2

Let I = G ◦
C(Onr) be as above. Then I is also an Iwahori subgroup of cG(knr). On the other

hand, cG is a residually quasi-split semi-simple group over k, cG(knr) contains an Iwahori
subgroup which is stable under the twisted Γ-action. But Iwahori subgroups of cG(knr) are
conjugate by Proposition 2.2.16, so there exists g ∈ cG(knr) = G(knr) such that gIg−1 is
stable under the twisted Γ-action, i.e.

cσ · σ(gIg−1) · c−1
σ = gIg−1

for any σ ∈ Γ. In particular, the cocycle zσ := g−1 · cσ · σg ∈ G(knr) normalizes I. According
to Proposition 2.2.17, the normalizer of I is I itself, so we conclude that z ∈ Z1(Γ, I) ⊂
Z1(Γ, G(knr)) is cohomologous to c. Therefore it will be su�cient to show H1(Γ, I) = 1.

By unrami�ed Galois descent Example 3.1.13, H1(Γ, I) = H1(Γ,G ◦
C(Onr)) equals to

H1
ét(O,G ◦

C). Consequently, it su�ces to show X (O) ̸= ∅ for any G ◦
C-torsor over O, i.e.,

any such torsor is trivial. By O-smoothness of X and the Henselian assumption on O, we
reduce to prove that the special �bre of X has a κ-point. But the isomorphism class of the
special �bre as a torsor over κ is determined by an element of the setH1(Γ,G ◦

C(κ)). According
to Steinberg's theorem, this set is trivial. (Recall that κ is perfect and cd(κ) ≤ 1.)

3.3 Conjugacy of special tori

Recall that κ is a perfect �eld such that cd(κ) ≤ 1. Thus every k-chamber is a chamber.

Lemma 3.3.1. For i = 1, 2, let Ai be special k-apartments of B(Gss/knr) with corresponding

special k-torus Ti. Let Ai := Ai ∩ B. Let S be a k-split torus contained in T1 ∩ T2. Let

Ω ̸= ∅ be a Γ-stable bounded subset of A1∩A2. There exists an element g ∈ G ◦
Ω(O) ⊂ Gss(k)

commuting with S such that T2 = gT1g
−1.

Proof. This is a consequence of Proposition 2.2.10.

2We emphasize that G(knr) and cG(knr) are not identi�ed as Γ-groups!
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Theorem 3.3.2. Let G be a connected reductive group over k. Let T1 and T2 be special

k-tori of G. Then T2 = gT1g
−1 for some g ∈ Gss(k).

Proof. For i = 1, 2, let Ai be the corresponding special k-apartment of Ti.

� Suppose A1 ∩ A2 ̸= ∅. This follows from Lemma 3.3.1.

� Suppose A1 ∩ A2 = ∅. Fix respective k-chambers Ci in Ai for i = 1, 2. Let A be a
special k-apartment of B(Gss/knr) containing Ci for i = 1, 2. Let T ⊂ G be the special
k-torus corresponding to A. Applying Lemma 3.3.1 to the pair {A,Ai} for i = 1, 2,
we see that T is conjugate to Ti under G

ss(k). In particular, T1 and T2 are conjugate
under Gss(k) as well.

Applying Theorem 3.3.2 to CG(S) yields the following corollary.

Corollary 3.3.3. Let S ⊂ G be a maximal k-split torus. Let CG(S) be the centralizer of S
in G. Then any two special k-tori of CG(S) are conjugate under some g ∈ (DCG(S))(k).

32



Bibliography

[BS68] Armand Borel and Albert Springer, Rationality properties of linear algebraic groups. II, Tohoku
Math. J. (2) 20 (1968), 443�497, DOI 10.2748/tmj/1178243073. MR0244259

[Bor88] Mikhail Borovoi, Galois cohomology of real reductive groups and real forms of simple Lie alge-

bras, Funktsional. Anal. i Prilozhen. 22 (1988), no. 2, 63�64, DOI 10.1007/BF01077606 (Rus-
sian); English transl., Funct. Anal. Appl. 22 (1988), no. 2, 135�136. MR947609

[Bor98] , Abelian Galois cohomology of reductive groups, Mem. Amer. Math. Soc. 132 (1998),
no. 626, viii+50, DOI 10.1090/memo/0626. MR1401491

[BLR90] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der
Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21,
Springer-Verlag, Berlin, 1990. MR1045822

[BT72] François Bruhat and Jacques Tits, Groupes réductifs sur un corps local, Inst. Hautes Études
Sci. Publ. Math. 41 (1972), 5�251 (French). MR0327923

[BT84] , Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d'une donnée

radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197�376 (French). MR756316

[CTHH+22] Jean-Louis Colliot-Thélène, David Harbater, Julia Hartmann, Daniel Krashen, Raman Pari-
mala, and Venapally Suresh, Local-global principles for constant reductive groups over semi-

global �elds, Michigan Math. J. 72 (2022), 77�144, DOI 10.1307/mmj/20217219. MR4460250

[CGP15] Brian Conrad, Ofer Gabber, and Gopal Prasad, Pseudo-reductive groups, 2nd ed., New Math-
ematical Monographs, vol. 26, Cambridge University Press, Cambridge, 2015. MR3362817

[GGMB14] Ofer Gabber, Philippe Gille, and Laurent Moret-Bailly, Fibrés principaux sur les corps valués

henséliens, Algebr. Geom. 1 (2014), no. 5, 573�612, DOI 10.14231/AG-2014-025 (French, with
English and French summaries). MR3296806

[GS17] Philippe Gille and Tamás Szamuely, Central simple algebras and Galois cohomology, Cambridge
Studies in Advanced Mathematics, vol. 165, Cambridge University Press, Cambridge, 2017.
Second edition of [MR2266528]. MR3727161

[Har02] David Harari, Groupes algébriques et points rationnels, Math. Ann. 322 (2002), no. 4, 811�826,
DOI 10.1007/s002080100289 (French, with English and French summaries). MR1905103

[Mil17] James Milne, Algebraic groups, Cambridge Studies in Advanced Mathematics, vol. 170, Cam-
bridge University Press, Cambridge, 2017. The theory of group schemes of �nite type over a
�eld. MR3729270

[Pra20] Gopal Prasad, A new approach to unrami�ed descent in Bruhat�Tits theory, Amer. J. Math.
142 (2020), no. 1, 215�253, DOI 10.1353/ajm.2020.0005. MR4060875

[San81] Jean-Jacques Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur

un corps de nombres, J. Reine Angew. Math. 327 (1981), 12�80, DOI 10.1515/crll.1981.327.12
(French). MR631309

33



[Ser65] Jean-Pierre Serre, Cohomologie galoisienne, With a contribution by Jean-Louis Verdier. Lecture
Notes in Mathematics, No. 5. Troisième édition, vol. 1965, Springer-Verlag, Berlin-New York,
1965 (French). MR0201444

[SGA3II] Michael Artin, Alexander Grothendieck, and Michel Raynaud, Schémas en groupes. II: Groupes

de type multiplicatif, et structure des schémas en groupes généraux, Séminaire de Géométrie
Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck.
Lecture Notes in Mathematics, Vol. 152, Springer-Verlag, Berlin-New York, 1970 (French).
MR0274459 (43 #223b)

34


	Introduction and Convention
	Galois cohomology of number fields
	The set H1
	The kernel of the diagonal map
	The cokernel of the diagonal map

	Arithmetic setting of fields
	Statement of main theorems
	Geometric and group-theoretic settings
	Pseudo-reductive groups

	Bruhat–Tits Theory
	Preliminaries
	The enlarged Bruhat–Tits building
	Description of building axioms
	Bounded subsets
	Special k-objects

	Affine building of G(k)
	Polysimplicial complex structure
	Results on anisotropic groups
	Unramified descent of buildings
	Conjugacy of subgroups
	Transitive group actions
	Parahoric subgroups


	Application to Galois Cohomology
	Preliminaries
	Galois cohomology
	A theorem of Steinberg–Borel–Springer
	Unramified Galois descent

	Proof of main theorems
	Preliminaries

	Conjugacy of special tori


