
Notations and definitions Double Dirichlet series for elliptic curves Example

On Computation of Double Dirichlet Series of
Elliptic Curves over Finite Fields

Wei-Chen Yao
Department of Mathematics

University of Taipei

October 14 2015

Joint Work with Ting-Fang Lee

1 / 30



Notations and definitions Double Dirichlet series for elliptic curves Example

1 Notations and definitions
Quadratic character χD

L-function
Correction factor
The double Dirichlet series
The functional equations

2 Double Dirichlet series for elliptic curves

3 Example

2 / 30



Notations and definitions Double Dirichlet series for elliptic curves Example

Notation:

Fq : finite field of odd characteristic.
C : smooth projective curve over Fq.
K : function field of C .

Div(C ) : the group of Fq-rational divisors on C .
Div0(C ) : the divisors of degree 0.
DivP(C ) : the subgroup of Div0(C ) consisting of the

principal divisors.
Pic(C ) : Div(C )/DivP(C ), the Picard group.
Pic0(C ) : Div0(C )/DivP(C ).
Div(T ) : the subgroup of divisors whose support is contained

in T where T is a finite or cofinite set of places of K .
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Let S ⊆ C be a finite set of places of K such that Div(S)
represents all classes in Pic(C ), and let

F =
∑
v∈S

nvv

be an effective divisor with nv ≥ 1 for all v ∈ S . We define

DivP,F (C − S) = {(f ) : f ∈ K×, ordv (f − 1) ≥ nv for all v ∈ S}.

Furthermore, define PicF (C ) = Div(C − S)/DivP,F (C − S) to be
the ray class group modulo F and

Pic0
F (C ) = Div0(C − S)/DivP,F (C − S) to be the degree zero

subgroup.
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Quadratic character χD

For m ∈ K× and D ∈ Div(C ), let(m
D

)
=

∏
v ,ordv (m)=0

(m
v

)ordv (D)
,

where the right hand side is a product of Legendre symbols. Let
χm be the character defined by

χm(D) =
(m
D

)
if D is disjoint from (m), and χm((n)) = 1 if n ≡ 1 modulo the
square-free part of (m).
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Quadratic character χD

Fisher and Friedberg define a character χD on Div(C − S) as
following:

Let E be a set of effective divisors of cosets representatives for
Div(C − S)/[2 Div(C − S) + DivP,F (C − S)] ' PicF (C )⊗ Z/2Z.
For each E ∈ E , we choose mE ∈ K× such that
E − (mE ) ∈ Div(S).

If D ∈ Div(C − S), we can write D = E + (m) + 2G with E ∈ E ,
m ≡ 1 mod F , and G ∈ Div(C − S). We then define

χD = χmmE
.

Furthermore, we assume that 0 ∈ E and m0 = 1, so that
χ(m) = χm if m ≡ 1 mod F .
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Quadratic character χD

The quadratic character χD is well-defined. It depends on the
choice of the representatives E ⊂ Div(C − S) and mE , but not the
choice of m. We also can choose E such that

χD+D′ = χD · χD′ .

If D is an effective divisor, let SD be the support of the conductor
of χD , and D ′ be its square-free part. Consistent with class field
theory, we may check that χD(D1) = χD′(D1) whenever both are
defined. This allows us to extend χD to a character of
Div(C − S − SD).
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L-function

Let ρ be a character of Div(C − S), and Fρ be its conductor. We
define the partial L-series

L(s, ρ;C − S) :=
∏
v 6∈S

(1− ρ(v)|v |−s)−1

where |v | is the norm of v and S is the support of Fρ. Then the
Euler product is also a sum over effective divisors:

L(s, ρ;C − S) =
∑

0≤D∈Div(C−S)

ρ(D)|D|−s

for Re(s) > 1. These L-series have an analytic continuation and
functional equation.
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Correction factor

Choose a divisor B1 ∈ Div(C − S) of degree one. We define

XF (C ) = Div(C − S)/(〈2B1〉+ DivP,F (C − S)).

Let F be the fixed conductor. Let ρ be a character of XF (C ), and
µ be the Möbius function on Div(C ). Given an effective divisor
D ∈ Div(C − S) and let SD denote the support of the conductor of
χD . Define the finite sum

a(s, ρ,D) =
∑

0≤d1∈Div(C−S−SD )

0≤d2∈Div(C−S)
2(d1+d2)≤D

µ(d1)χD(d1)ρ(d1 + 2d2)|d1|−s |d2|1−2s .

Write D = D0 + 2D1 with D0 square-free. This correction factor
has a functional equation

a(s, ρ,D) = ρ(2D1)|D1|1−2sa(1− s, ρ−1,D).
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The double Dirichlet series

Define

L(s, ρ,D) := L(s, ρχD ;C − S − SD)a(s, ρ,D).

Given ρ1 and ρ2 are characters on XF (C ). We define the double
Dirichlet series

Z (s,w ; ρ1, ρ2) :=
∑

0≤D∈Div(C−S)

ρ2(D)L(s, ρ1,D)|D|−w

which converges absolutely in the tube domain Re(s) > 1 and
Re(w) > 1.
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The double Dirichlet series

Since the definition of the characters χD depends on the choice of
the representatives E ⊂ Div(C − S), and the element mE ,E ⊂ E .
The twisted L-functions also depends on these choices. Moreover,
the definition also depends on the choice the degree-one divisor
B1 ∈ Div(C − S). However, varying over ρ1, ρ2 gives a
finite-dimensional vector space, which depends only on F .

Theorem (Fisher and Frideberg)

Let V (F ) be the span of Z (s,w ; ρ1, ρ2) for ρ1, ρ2 ∈ X̂F (C ). Then
V (F ) is a finite-dimensional vector space of functions, which is
independent of the choices of the representatives E and the
element mE ,E ∈ E . If in addition the exponent of the group PicF ,0
is even, then the vector space is independent of the choice of the
degree-one divisor B1.
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The double Dirichlet series

Remark. Let R(F ) be the vector space of functions on XF (C ) with
values in C. Since XF (C ) is a finite abelian group, its characters
form a basis of R(F ). If σj ∈ R(F ), j = 1, 2 and σj =

∑
ci ,jρi with

the ρi characters of X (F ) and ci ,j ∈ C, then define

Z (s,w ;σ1, σ2) =
∑
i1,i2

ci1,1ci2,2Z (s,w ; ρi1 , ρi2).

In particular, for x ∈ XF (C ), let δx denote the function on
Div(C − S) given by δx(D) = 1 if the class of D in XF (C ) is x ,
δx(D) = 0 otherwise. Then the δx for x ∈ X (F , n), give another
basis of R(F ), and Z (s,w ; ρ, δx) is a partial Dirichlet series, the
sum over all effective divisors of the form D = E + (m) + 2jB1

with m ≡ 1 (mod F ) and j an integer, where E is a fixed
representative of x .
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The functional equations

The first functional equation of Z (s,w ; ρ1, ρ2) can be derived by
making use of the functional equation of L(s, ρ,D). We state it in
the following:

Theorem (First Functional Equation, FF)

Let x ∈ XF (C ) and let δx denote the characteristic function on
Div(C − S): δx(D) = 1 if D is in the same coset with x, and
δx(D) = 0 otherwise. Let E ∈ E represent the coset of x in
XF (C ). Given a character ρ of XF (C ), then

Z (s,w ; ρ, δx) =
L(s, ρ,E )

L(1− s, ρ−1,E )

× ρ(x − E )|E |s−1/2Z (1− s, s + w − 1

2
; ρ−1, δx)

on the tube domain
Re(w) > max{1, 3/2− Re(s), 3/2− 1/2 Re(s)}.
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The functional equations

The second functional equation sends (s,w) 7→ (w , s). We use the
reciprocity law to analyze the relation between χD2(D1) and
χD1(D2).

Lemma

Suppose D,D ′ ∈ Div(C − S) have disjoint support. Let

α(D,D ′) := χD(D ′)/χD′(D).

Then α(D,D ′) depends only on the images of D and D ′ in XF (C ).
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The functional equations

The second functional equation is described as following:

Theorem (Second Functional Equation, FF)

Let η1 and η2 be functions on XF (C ). For E ∈ E , let δE denote
the characteristic function δE (D) = 1 if D and E represent the
same class in XF (C ), δE (D) = 0 otherwise. Assuming that
Re(s) > 1 and Re(w) > 1, then

Z (s,w ; ρ1, ρ2) =
∑

E1,E2∈E
α(E2,E1)Z (w , s; δE2 ρ2, δE1 ρ1).

In particular, for E1, E2 ∈ E

Z (s,w ; δE1 , δE2) = α(E1,E2)Z (w , s; δE2 , δE1).
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The functional equations

Since (1− q2(1−s))Z (s,w ; ρ1, ρ2) converges absolutely and
uniformly on compact in the tube domain T1 defined by the
condition Re(w) > max{1, 3

2 − Re(s), 3
2 −

1
2Re(s)}. Let T2 be the

image of T1 under the involution (s,w) 7→ (w , s), and T3 be the
image of T2 under the involution (s,w) 7→ (1− s, s + w − 1

2 ).

Let Φ(s,w) := (1− q2(1−s))(1− q2(1−w))(1− q2(3/2−s−w)). Then
Φ(s,w)Z (s,w ; ρ1, ρ2) represents an analytic function on
T1 ∪ T2 ∪ T3. The convexity principle for analytic functions on
tube domain gives the analytic continuation of
Φ(s,w)Z (s,w ; ρ1, ρ2) to all of C2.

Theorem (Fisher and Friedberg)

Z (s,w ; ρ1, ρ2) has meromorphic continuation to all of C2 and is a
rational function in q−s and q−w . Moreover,
Φ(s,w)Z (s,w ; ρ1, ρ2) is a polynomial of degree at most
2 deg F + 4g in each of q−s and q−w .
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Double Dirichlet Series for Elliptic Curves

Let C be an elliptic curve over Fq with q odd and K be the
function field of C .

In the elliptic curve case, C (Fq) −→ Pic0(C ) is an isomorphism of
abelian groups where C (Fq) denotes the set of rational points. We
choose S = {P0,P1, ...,Ph−1} to be the finite set of places that
each corresponds to a rational point on C where P0 correspond to

the infinity place. Define F =
h−1∑
i=0

Pi .

To formulate all functional equations, we need to know the
structure of the quotient group XF (C ). The first step is to study
the ray class group Pic0

F (C ).
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Suggested by computation, we have the following conjecture.

Conjecure

Suppose Pic0(C ) ∼= Z/n1Z⊕ · · · ⊕ Z/nrZ for some positive integer
n1, . . . , nr . Then

Pic0
F (C ) ∼= (

h−1−r⊕
i=1

Z/(q − 1)Z)⊕ (
r⊕

j=1

Z/nj(q − 1)Z).

Although we can not prove the Conjecture, we can prove the
following result.

Lemma

Divp(C − S)/DivP,F (C − S) ' Z/(q − 1)Z⊕ · · · ⊕ Z/(q − 1)Z
where there are h − 1 copies.
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The above conjecture gives the structure of the quotient group

XF (C ) ∼= (Pic0
F (C )⊕ Z)⊗ Z/2Z

∼= Z/2Z⊕ · · · ⊕ Z/2Z

is a direct sum of h copies of Z/2Z. Next, we will determine a set
of effective divisors which represents a coset of representatives of
XF (C ).
Let C : y2 = f (x) be an elliptic curve over Fq and let

{P∞ = P0,P1,P2, · · · ,Ph−1}

be the set of all degree one places on C . Find an element γ ∈ Fq

such that f (x)− γ2 is irreducible over Fq. Then we can write
(y − γ) = Q0 − 3P∞ where Q0 is a place of degree 3. Then we put

E0 = Q0 and m0 := mE0 = y − γ.
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Let Pi 6= P∞ be a degree one place and let (αi , βi ) be the rational
point of C corresponding to Pi . We find a number k ∈ Fq such
that (αi , βi ) is the only solution of the system{

y − βi = k(x − αi )

y2 = f (x)
in Fq × Fq.

Hence
(y − k(x − αi ) + βi ) = Pi + Qi − 3P∞

where Qi is a place of degree 2. Then we put

Ei = Qi and mi := mEi
= y − k(x − αi ) + βi

for i = 1, · · · , h − 1.
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We define

E := {
h−1∑
i=0

εiEi |εi = 0 or 1}

to be a set of coset representatives of the quotient group XF (C ).
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Definition

The double Dirichlet series of C is

Z (s,w ; id, id) =
∑

0≤D∈Div(C−S)

L(s, id,D)|D|−w .

By the rationality theorem, Z (s,w ; id, id) is a rational function
with denominator (1− q2t2)(1− q2u2)(1− q3t2u2) and

(1− q2t2)(1− q2u2)(1− q3t2u2)Z (s,w ; id, id)

is a polynomial in t and u which the degree in t and u are less
than 2h + 4 where t = q−s and u = q−w .
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By computing the Gauss sum and applying the functional equation
of L-function, one can get the following lemma.

Lemma

Let ρ be a character of XF (C ), D = D0 + 2D1 ∈ Div(C − S) with
D0, D1 ≥ 0 and D0 square-free, Fρ,D the conductor of ρχD , and
Sρ,D the support of Fρ,D . Then

L(s, ρ,D)

L(1− s, ρ−1,D)
= ρ(2D1)(qdeg(Fρ,D+2D1))1/2−s

×
∏

v∈S−Sρ,D

1− ρχD(v)|v |−s

1− ρ−1χD(v)|v |s−1
.
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In order to get more information of the second functional equation
of double Dirichlet series, we will show several properties of the
function α which is defined in last section. First of all, If D and D ′

are not disjoint, then we choose D1 disjoint from D ′ in the same
class in XF (C ) with D, and define α(D,D ′) = α(D1,D

′).

Lemma

1. α(E0,E0) =
(−1

q

)
= (−1)

q−1
2

2. α(Ei ,Ei ) =
(−1

q

)
= (−1)

q−1
2 for i = 1, · · · , h − 1.

3. α(Ei ,E0) =
(−1

p∞

)(m0

Pi

)
= (−1)

q−1
2

(m0

Pi

)
for i = 1, · · · h− 1.

4. α(Ei ,Ej) =
(−1

P∞

)(mi

Pj

)−1(mj

Pi

)
for i , j = 1, · · · , h − 1 and

i 6= j .
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By the definition of partial L functions, L(s, id;C − S) = ζK ,S(s)
where ζK ,S(s) is the zeta function with the Euler factors in S is
removed. Hence, we have the following Lemma.

Lemma

L(s, id;C − S) =
(1− q−s)h−1(1 + (h − 1− q)q−s + q1−2s)

1− q1−s .
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Example

Let K be the function field of the curve C : y2 = x3 + 2x over F5

(i.e. q = 5). The class number of K is 2. We can choose
S = {P∞,P} where P∞ corresponds to the infinity place and P
corresponds to (0, 0). Let F = P∞ + P. The ray class group
PicF (C ) ∼= Z/8Z⊕ Z gives X (F ) ∼= Z/2Z⊕ Z/2Z.

Let E0 = 3 · P∞ + (y + 1) and E1 = 3P∞ − P + (y), then

E = {0,E0,E1,E0 + E1}

is a set of coset representatives of XF (C ). The quadratic
characters attached to each divisor in E are:

χ0 = id, χE0 =
(y + 1

·

)
, χE1 =

(y
·

)
, χE0+E1 =

(y(y + 1)

·

)
.
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By the arguments in last section, the double Dirichlet series of C is

Z (s,w ; id, id) =
f (t, u)

(1− q2t2)(1− q2u2)(1− q3t2u2)

where t = q−s , u = q−w and f (t, u) is a polynomial in t, u with
degree ≤ 8. Let

Z (s,w ; id, δ0) =
f0(t, u)

(1− q2t2)(1− q2u2)(1− q3t2u2)

(:=
∑

0≤D∈DivP,F (C−S)+2 Div(C−S)

L(s, χD ;C − S − SD)a(s, id,D)|D|−w )

Z (s,w ; id, δE0) =
fE0(t, u)

(1− q2t2)(1− q2u2)(1− q3t2u2)

(:=
∑

0≤D∈E0+DivP,F (C−S)+2 Div(C−S)

L(s, χD ;C − S − SD)a(s, id,D)|D|−w )
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Z (s,w ; id, δE1) =
fE1(t, u)

(1− q2t2)(1− q2u2)(1− q3t2u2)

(:=
∑

0≤D∈E1+DivP,F (C−S)+2 Div(C−S)

L(s, χD ;C − S − SD)a(s, id,D)|D|−w )

Z (s,w ; id, δE0+E1) =
fE0+E1(t, u)

(1− q2t2)(1− q2u2)(1− q3t2u2)

(:=
∑

0≤D∈E0+E1+DivP,F (C−S)+2 Div(C−S)

L(s, χD ;C − S − SD)a(s, id,D)|D|−w )

where fx(t, u) =
8∑

i ,j=0

ai ,j ,x t
iuj with ai ,j ,x ∈ Z for k = 0, ..., 3 and

f (t, u) =
∑

x∈X (F )

fx(t, u).
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We can write the first functional equations as follows:

Z (s,w ; id, δ0) = (
1− t

1− (qt)−1
)2Z (1− s, s + w − 1

2
; id, δ0),

Z (s,w ; id, δE0) =
√
qt

1− t

1− (qt)−1
Z (1− s, s + w − 1

2
; id, δE0),

Z (s,w ; id, δE1) = qt2Z (1− s, s + w − 1

2
; id, δE1)

Z (s,w ; id, δE0+E1) =
√
qt

1− t

1− (qt)−1
Z (1− s, s + w − 1

2
; id, δE0+E1),

By lemma in last section, α(E ,E ′) = 1 for all E ,E ′ ∈ X (F ). This
gives the second functional equation

Z (s,w ; id, id) = Z (w , s; id, id).
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Applying the functional equations, the relation with L-function,
and computation on sums of quadratic characters, we get

Z (s,w ; id, id) =
f (t, u)

(5t − 1)(5u − 1) (125t2u2 − 1)

where

f (t, u) = 637125t7u7 − 252425t7u6 + 78125t7u5 − 15625t7u4

− 252425t6u7 + 175485t6u6 − 35625t6u5 + 28125t6u4

− 5000t6u3 + 78125t5u7 − 35625t5u6 − 41125t5u5

− 7375t5u4 + 4500t5u3 + 100t5u2 − 15625t4u7 + 28125t4u6

− 7375t4u5 − 1425t4u4 − 4020t4u3 + 820t4u2 − 5000t3u6

+ 4500t3u5 − 4020t3u4 + 3189t3u3 − 669t3u2 − 25t3u + 5t3

+ 100t2u5 + 820t2u4 − 669t2u3 + 137t2u2 + 45t2u

− 9t2 − 25tu3 + 45tu2 − 25tu + 5t + 5u3 − 9u2 + 5u − 1.
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